Publications by authors named "Benevides C Pessela"

The use of lipases from animal sources for the synthesis of new biocatalysts is barely studied in the literature. The present work focused on the immobilization of lipases from kid goat's and lamb's epiglottis in different ionic supports. For this, anionic supports (monoaminoethyl-N-aminoethyl-agarose (MANAE) and diethylaminoethyl-agarose (DEAE)) and cationic supports (carboxymethyl-agarose and sulfopropyl-agarose) were used.

View Article and Find Full Text PDF

In this work, nanostructured copper materials have been designed, synthetized, and evaluated in order to produce a more efficient and sustainable copper bionanohybrid with catalytical and antimicrobial properties. Thus, conditions are sought where the most critical steps are reduced or minimized, such as the use of reducing agents or the cryogenization step. In addition, the new materials have been characterized through different techniques, and their oxidative and reductive capacities, as well as their antimicrobial activity, have been evaluated.

View Article and Find Full Text PDF

Borututu ( Welw.) roots have been described as a rich source of phenolic compounds. Despite the potential of this plant for the production of bioactive extracts, studies reported until now have been scarce, and they have been based on the use of inefficient conventional extraction techniques.

View Article and Find Full Text PDF

Nanobiocatalysts were produced via immobilization of CalB lipase on polyurethane (PU) based nanoparticles and their application on the synthesis of important industrial products was evaluated. Nanoparticles of polyurethane functionalized with poly(ethylene glycol) (PU-PEG) were synthetized through miniemulsion polymerization and the addition of crosslinking agents were evaluated. The nanoparticles were employed as support for CalB and the kinetic parameters were reported.

View Article and Find Full Text PDF

The insolubilization of a recombinant l-arabinose isomerase (l-AI) from Enterococcus faecium by cross-linked enzyme aggregates (CLEA) was investigated, aiming the biochemical production of d-tagatose from d-galactose. d-tagatose is a functional sweetener that has many health benefits, sweetening properties and lower calorific value. Different precipitants (ammonium sulfate, ethanol, acetone, polyethylene glycol 4000) were used in the first step of the protocol, in order to establish the precipitation conditions, and the best results of yield and activity were achieved with ammonium sulfate.

View Article and Find Full Text PDF

Many industrial enzymes can be highly glycosylated, including the β-glucosidase enzymes. Although glycosylation plays an important role in many biological processes, such chains can cause problems in the multipoint immobilization techniques of the enzymes, since the glycosylated chains can cover the reactive groups of the protein (e.g.

View Article and Find Full Text PDF

This paper describes a bioprocess to obtain omegas-6 and 9 from the hydrolysis of Açaí ( Martius) and Buriti oils by lipases immobilized on octyl-sepharose. For this, oils and butters were initially selected as the carbon source which resulted in higher production of lipases in and cultures. The carbon source that provided secretion of lipase by was Açaí oil, and for , Bacuri butter.

View Article and Find Full Text PDF

A recombinant L-arabinose isomerase from Enterococcus faecium DBFIQ E36 was immobilized onto multifunctional epoxide supports by chemical adsorption and onto a chelate-activated support via polyhistidine-tag, located on the N-terminal (N-His-L-AI) or on the C-terminal (C-His-L-AI) sequence, followed by covalent bonding between the enzyme and the support. The results were compared to reversible L-AI immobilization by adsorption onto charged agarose supports with improved stability. All the derivatives presented immobilization yields of above 75%.

View Article and Find Full Text PDF

The oleaginous yeast R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba () cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating -5,8,11,15,17-eicosapentaenoic acid from sardine oil.

View Article and Find Full Text PDF

Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr), glyoxyl-agarose (GX), MANAE-agarose activated with glutaraldehyde (GA) and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr), at 50 °C, 60 °C and 70 °C.

View Article and Find Full Text PDF

The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent.

View Article and Find Full Text PDF

Ribavirin is a synthetic guanosine analogue with a broad-spectrum of antiviral activity. It is clinically effective against several viruses, such as respiratory syncytial virus, several hemorrhagic fever viruses and HCV when combined with pegylated interferon-α. Phosphopentomutase (PPM) catalyzes the transfer of intramolecular phosphate (from C1 to C5) on ribose, and is involved in pentose phosphate pathway and in purine metabolism.

View Article and Find Full Text PDF

Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from sp.

View Article and Find Full Text PDF

β-Xylosidases are critical for complete degradation of xylan, the second main constituent of plant cell walls. A minor β-xylosidase (BXYL II) from Penicillium janczewskii was purified by ammonium sulfate precipitation (30% saturation) followed by DEAE-Sephadex chromatography in pH 6.5 and elution with KCl.

View Article and Find Full Text PDF

This present work describes the production and biochemical characterization of lipase by Candida rugosa and Geotrichum candidum in a culture supplemented with soybean molasses. After optimizing the fermentation times for both microorganisms, the effects of changing the soybean molasses concentration, the fermentative medium pH and the fermentation temperature were evaluated using the Central Composite Planning. When soybean molasses was used at a concentration of 200 g/L at 27 ± 1 °C and pH 3.

View Article and Find Full Text PDF

Background: Biodiesel industry wastes were evaluated as supplements for lipase production by Moniliella spathulata R25L270, which is newly identified yeast with great lipolytic potential. Macaúba cake (MC), used for the first time in this work as inducer to produce lipases, and residual oil (RO) were mixed to maximise enzyme production. The lipase secreted was biochemically characterised.

View Article and Find Full Text PDF

A novel β-galactosidase from Lactobacillus plantarum (LPG) was over-expressed in E. coli and purified via a single chromatographic step by using lowly activated IMAC (immobilized metal for affinity chromatography) supports. The pure enzyme exhibited a high hydrolytic activity of 491 IU/mL towards o-nitrophenyl β-D-galactopyranoside.

View Article and Find Full Text PDF

Plant cell-wall arabinoxylans have a complex structure that requires the action of a pool of debranching (arabinofuranosidases) and depolymerizing enzymes (endo-xylanase). Two Aspergillus nidulans strains over-secreting endo-xylanase and arabinofuranosidase were inoculated in defined 2% maltose-minimum medium resulting in the simultaneously production of these enzymes. To study the synergistic hydrolysis was used arabinoxylan with 41% of arabinose and 59% of xylose residues.

View Article and Find Full Text PDF

The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5.0.

View Article and Find Full Text PDF

Novel heterofunctional glyoxyl-agarose supports were prepared. These supports contain a high concentration of groups (such as quaternary ammonium groups, carboxyl groups, and metal chelates) that are capable of adsorbing proteins, physically or chemically, at neutral pH as well as a high concentration of glyoxyl groups that are unable to immobilize covalently proteins at neutral pH. By using these supports, a two-step immobilization protocol was developed.

View Article and Find Full Text PDF

A new anion exchanger support has been designed for the selective adsorption of small proteins. This has been achieved activating an aminated support with glutaraldehyde and further coating the support surface with bovine serum albumin (BSA). In this support, "wells" are generated by two neighborhoods BSA molecules, on the bottom of those "wells" glutaraldehyde groups are exposed out ready to react with small molecules that have a size small enough to be accommodated between two BSA molecules on the pre-existing support.

View Article and Find Full Text PDF

A support having similar amounts of carboxymethyl and amino groups has been prepared and evaluated as an ion exchanger. It has been found that this support was able to adsorb a high amount of protein from a crude extract of proteins (approximately 55%) at pH 5. Moreover, it was able to adsorb approximately 60% of the protein that did not become adsorbed on supports bearing just one kind of ionic groups.

View Article and Find Full Text PDF