Publications by authors named "Benetatos L"

Anemia is a common feature of both benign and malignant hematologic diseases. Beta-thalassemia (β-thalassemia) syndromes are a group of hereditary disorders characterized by ineffective erythropoiesis, due to a genetic deficiency in the synthesis of the beta chains of hemoglobin, often accompanied by severe anemia and the need for red blood cell (RBC) transfusions. Myelodysplastic syndromes (MDS) are characterized by cytopenia(s) and ineffective hematopoiesis, despite a hypercellular bone marrow.

View Article and Find Full Text PDF

DNA methylation has a well-established role in the pathogenesis, prognosis, and response to treatment in all the spectra of hematological malignancies. However, most of the data reported involve average DNA methylation observed in a sample. The emergence of bisulfite sequencing methods such as enhanced reduced representation that permit analyze adjacent CpGs led to exciting findings.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have an established role in cell biology. Among their functions is the regulation of hematopoiesis. They characterize the different stages of hematopoiesis in a more lineage-restricted expression pattern than coding mRNAs.

View Article and Find Full Text PDF

Transcription requires the fine interplay between enhancers and transcription factors. Enhancers are able to activate transcription of genes involved in normal cell biology, whereas aberrant enhancer activity leads to oncogenesis. MYC is a well-established proto-oncogene involved in half of human cancers amplifying the output of its targets.

View Article and Find Full Text PDF

DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are able to positively or negatively regulate other genes expression in cis or in trans. Their effect can be achieved through RNA-protein, RNA-DNA, or RNA-RNA interactions. They can recruit transcription factors and act as scaffolds or guides for chromatin-modifying enzymes.

View Article and Find Full Text PDF

DNA methylation is the most common epigenetic modification in the mammalian genome. DNA methylation is governed by the DNA methyltransferases mainly DNMT1, DNMT3A, and DNMT3B. DNMT1 methylates hemimethylated DNA ensuring accurate DNA methylation maintenance.

View Article and Find Full Text PDF

Genomic imprinting is characterized by the parent-of-origin monoallelic expression of several diploid genes because of epigenetic regulation. Imprinted genes (IGs) are key factors in development, supporting the ability of a genotype to produce phenotypes in response to environmental stimuli. IGs are highly expressed during prenatal stages but are downregulated after birth.

View Article and Find Full Text PDF

DLK1-DIO3 represents an imprinted cluster which genes are involved in physiological cell biology as early as the stem cell level and in the pathogenesis of several diseases. Transcription factor-mediated induced pluripotent cells (iPSCs) are considered an unlimited source of patient-specific hematopoietic stem cells for clinical application in patient-tailored regenerative medicine. However, to date there is no marker established able to distinguish embryonic stem cell-equivalent iPSCs or safe human iPSCs.

View Article and Find Full Text PDF

Delta-like homologue 1 (DLK1) is an imprinted gene, that acts as a Notch pathway antagonist. It is deregulated in solid and blood cancers, conferring malignant cells a cancer stem cell-like phenotype. DLK1 is important for normal hematopoiesis and for bone marrow homeostasis, because it directly affects the differentiation of mesenchymal stem cells into the nonhematopoietic components.

View Article and Find Full Text PDF

Polycomb group proteins (PcGs) are transcriptional repressors involved in physiological processes whereas PcG deregulation might result in oncogenesis. MYC oncogene is able to regulate gene transcription, proliferation, apoptosis, and malignant transformation. MYC deregulation might result in tumorigenesis with tumor maintenance properties in both solid and blood cancers.

View Article and Find Full Text PDF

MicroRNAs are short noncoding RNAs, known regulators of several signaling pathways cell differentiation and proliferation, development, and apoptosis, which are deregulated in acute leukemia. Mixed lineage leukemia (MLL) gene encodes a protein with histone methyltransferase activity, which is essential for the fine tuning of hematopoietic stem cell development and differentiation through the regulation of HOXA and MEIS1. MLL gene rearrangements characterize both acute myeloid and acute lymphoblastic leukemia associated with poor outcomes.

View Article and Find Full Text PDF

Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults.

View Article and Find Full Text PDF

A large amount of data indicates that non-coding RNAs represent more than the "dark matter" of the genome. Both microRNAs and long non-coding RNAs are involved in several fundamental biologic processes, and their deregulation may lead in oncogenesis. Interacting with the Polycomb-repressive complex 2 subunit EZH2, they could affect the expression of protein-coding genes and form feedback networks and autoregulatory loops.

View Article and Find Full Text PDF

The mammalian genome is transcribed in a developmentally regulated manner, generating RNA strands ranging from long to short non-coding RNA (ncRNAs). NcRNAs generated by intergenic sequences and protein-coding loci, represent up to 98 % of the human transcriptome. Non-coding transcripts comprise short ncRNAs such as microRNAs, piwi-interacting RNAs, small nucleolar RNAs and long intergenic RNAs, most of which exercise a strictly controlled negative regulation of expression of protein-coding genes.

View Article and Find Full Text PDF

T-cell large granular lymphocyte (T-LGL) leukemia represents a clonal proliferation of cytotoxic T-cells which etiology has not been entirely elucidated. However, CD4(+), CD4(-), CD8(-), CD4(+), CD8(+) cases have been described. The disease is usually characterized by cytopenias and a modest lymphocytosis.

View Article and Find Full Text PDF

A rapidly growing body of evidence highlights the involvement of DLK1-MEG3 imprinted domain in cell biology and cancer pathogenesis. The imprinted domain contains protein-coding genes, long non-coding RNAs, and various small non-coding RNAs. The imprinted microRNAs located here interact with important transcription factors, modulate fundamental signaling cascades, form molecular signatures with diagnostic and prognostic potential, and could differentiate chemoresistant from chemosensitive disease.

View Article and Find Full Text PDF

BIK (bcl2-interacting killer) is the founding member of the BH3-only bcl-2 family of pro-apoptotic proteins, which is suppressed in various cancers. In multiple myeloma (MM), BIK has been shown to be epigenetically silenced in vitro, but there is a lack of clinical data. We investigated the CpG methylation status of the BIK promoter in a well-characterized clinical series of patients with MM and investigated its clinical relevance.

View Article and Find Full Text PDF

MicroRNAs are short noncoding RNAS involved in gene expression regulation under physiological and pathological situations. They bind to mRNA of target genes and are potential regulators of gene expression at a post-transcription level through the RNA interference pathway. They are estimated to represent 1% to 2% of the known eukaryotic genome, and it has been demonstrated that they are involved in the pathogenesis of neurodegenerative diseases, cancer, metabolism disorders, and heart disease.

View Article and Find Full Text PDF

Maternally expressed gene 3 (MEG3) is a maternally expressed imprinted gene representing a large noncoding RNA in which microRNAs (miRNAs) and small nucleolar RNAs are also hosted. It is capable of interacting with cyclic AMP, p53, murine double minute 2 (MDM2) and growth differentiation factor 15 (GDF15) playing a role in cell proliferation control. MEG3 expression is under epigenetic control, and aberrant CpG methylation has been observed in several types of cancer.

View Article and Find Full Text PDF

Polo-like kinase 2 (SNK/PLK2), a transcriptional target for wild-type p53 and is hypermethylated in a high percentage of multiple myeloma and B cell lymphomas patients. Given these data, we sought to study the methylation status of the specific gene in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), and to correlate it with clinical and genetic features. Using methylation-specific PCR MSP, we analyzed the methylation profile of 45 cases of AML and 43 cases of MDS.

View Article and Find Full Text PDF

Few studies have examined the association between methylenetetrahydrofolate reductase (MTHFR) SNPs, epigenetic changes, and multiple myeloma (MM). We wished to determine genotype distributions for MTHFR 1298AC SNP in cases of MM and healthy controls and to examine whether there is any correlation between the methylation status of the CpG island of CDKN2A and Snk/Plk2 and MTHFR genotypes and with overall survival (OS) and other relevant clinical parameters. Bone marrow and peripheral blood were obtained from 45 patients with MM and 77 controls, respectively.

View Article and Find Full Text PDF