Publications by authors named "Benedikt Staffler"

The dense circuit structure of mammalian cerebral cortex is still unknown. With developments in three-dimensional electron microscopy, the imaging of sizable volumes of neuropil has become possible, but dense reconstruction of connectomes is the limiting step. We reconstructed a volume of ~500,000 cubic micrometers from layer 4 of mouse barrel cortex, ~300 times larger than previous dense reconstructions from the mammalian cerebral cortex.

View Article and Find Full Text PDF

The neurosciences have developed methods that outpace most other biomedical fields in terms of acquired bytes. We review how the information content and analysis challenge of such data indicates that electron microscopy (EM)-based connectomics is an especially hard problem. Here, as in many other current machine learning applications, the need for excessive amounts of labelled data while utilizing only a small fraction of available raw image data for algorithm training illustrates the still fundamental gap between artificial and biological intelligence.

View Article and Find Full Text PDF

Nerve tissue contains a high density of chemical synapses, about 1 per µm in the mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense connectomic mapping requires the identification of millions to billions of synapses. While the focus of connectomic data analysis has been on neurite reconstruction, synapse detection becomes limiting when datasets grow in size and dense mapping is required.

View Article and Find Full Text PDF