Publications by authors named "Benedikt M Beckmann"

RNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistant Staphylococcus aureus (MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are released by cells from all kingdoms and represent one form of cell-cell interaction. This universal system of communication blurs cells type boundaries, offering an new avenue for pathogens to infect their hosts. EVs carry with them an arsenal of virulence factors that have been the focus of numerous studies.

View Article and Find Full Text PDF

Protein-RNA interactions regulate all aspects of RNA metabolism and are crucial to the function of catalytic ribonucleoproteins. Until recently, the available technologies to capture RNA-bound proteins have been biased toward poly(A) RNA-binding proteins (RBPs) or involve molecular labeling, limiting their application. With the advent of organic-aqueous phase separation-based methods, we now have technologies that efficiently enrich the complete suite of RBPs and enable quantification of RBP dynamics.

View Article and Find Full Text PDF

RNA-binding proteins are important for core cellular processes such as mRNA transcription, splicing, transport, translation, and degradation. Recently, hundreds of novel RNA-binders have been identified in vivo in various organisms and cell types. We discuss the RNA interactome capture technique which enabled this boost in identifying new RNA-binding proteins in eukaryotes.

View Article and Find Full Text PDF

Post-transcriptional regulation of gene expression in cells is facilitated by formation of RNA-protein complexes (RNPs). While many methods to study eukaryotic (m)RNPs rely on purification of polyadenylated RNA, other important regulatory RNA classes or bacterial mRNA could not be investigated at the same depth. To overcome this limitation, we developed Phenol Toluol extraction (PTex), a novel and unbiased method for the purification of UV cross-linked RNPs in living cells.

View Article and Find Full Text PDF

In recent years, hundreds of novel RNA-binding proteins (RBPs) have been identified, leading to the discovery of novel RNA-binding domains. Furthermore, unstructured or disordered low-complexity regions of RBPs have been identified to play an important role in interactions with nucleic acids. However, these advances in understanding RBPs are limited mainly to eukaryotic species and we only have limited tools to faithfully predict RNA-binders in bacteria.

View Article and Find Full Text PDF

Recent methodological advances allowed the identification of an increasing number of RNA-binding proteins (RBPs) and their RNA-binding sites. Most of those methods rely, however, on capturing proteins associated to polyadenylated RNAs which neglects RBPs bound to non-adenylate RNA classes (tRNA, rRNA, pre-mRNA) as well as the vast majority of species that lack poly-A tails in their mRNAs (including all archea and bacteria). We have developed the Phenol Toluol extraction (PTex) protocol that does not rely on a specific RNA sequence or motif for isolation of cross-linked ribonucleoproteins (RNPs), but rather purifies them based entirely on their physicochemical properties.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3days to complete.

View Article and Find Full Text PDF

Post-transcriptional regulation of gene expression plays a critical role in almost all cellular processes. Regulation occurs mostly by RNA-binding proteins (RBPs) that recognise RNA elements and form ribonucleoproteins (RNPs) to control RNA metabolism from synthesis to decay. Recently, the repertoire of RBPs was significantly expanded owing to methodological advances such as RNA interactome capture.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) exert a broad range of biological functions. To explore the scope of RBPs across eukaryotic evolution, we determined the in vivo RBP repertoire of the yeast Saccharomyces cerevisiae and identified 678 RBPs from yeast and additionally 729 RBPs from human hepatocytic HuH-7 cells. Combined analyses of these and recently published data sets define the core RBP repertoire conserved from yeast to man.

View Article and Find Full Text PDF

RNA-protein complexes play pivotal roles in many central biological processes. Although methods based on high-throughput sequencing have advanced our ability to identify the specific RNAs bound by a particular protein, there is a need for precise and systematic ways to identify RNA interaction sites on proteins. We have developed an experimental and computational workflow combining photo-induced cross-linking, high-resolution mass spectrometry and automated analysis of the resulting mass spectra for the identification of cross-linked peptides, cross-linking sites and the cross-linked RNA oligonucleotide moieties of such RNA-binding proteins.

View Article and Find Full Text PDF

Background: The Aquificales are a diverse group of thermophilic bacteria that thrive in terrestrial and marine hydrothermal environments. They can be divided into the families Aquificaceae, Desulfurobacteriaceae and Hydrogenothermaceae. Although eleven fully sequenced and assembled genomes are available, only little is known about this taxonomic order in terms of RNA metabolism.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) determine RNA fate from synthesis to decay. Employing two complementary protocols for covalent UV crosslinking of RBPs to RNA, we describe a systematic, unbiased, and comprehensive approach, termed "interactome capture," to define the mRNA interactome of proliferating human HeLa cells. We identify 860 proteins that qualify as RBPs by biochemical and statistical criteria, adding more than 300 RBPs to those previously known and shedding light on RBPs in disease, RNA-binding enzymes of intermediary metabolism, RNA-binding kinases, and RNA-binding architectures.

View Article and Find Full Text PDF

Bacillus subtilis 6S-1 RNA binds to the housekeeping RNA polymerase (σ(A)-RNAP) and directs transcription of short 'product' RNAs (pRNAs). Here, we demonstrate that once newly synthesized pRNAs form a sufficiently stable duplex with 6S-1 RNA, a structural rearrangement is induced in cis, which involves base-pairing between sequences in the 5'-portion of the central bulge and nucleotides that become available as a result of pRNA invasion. The rearrangement decreases 6S-1 RNA affinity for σ(A)-RNAP.

View Article and Find Full Text PDF

By differential high-throughput RNA sequencing (dRNA-seq) we have identified "product RNAs" (pRNAs) as short as 8-12 nucleotides that are synthesized by Bacillus subtilis RNA polymerase (RNAP) in vivo using the regulatory 6S-1 RNA as template. The dRNA-seq data were confirmed by in vitro transcription experiments and Northern blotting. In our libraries, we were unable to detect statistically meaningful numbers of reads potentially representing pRNAs derived from 6S-2 RNA.

View Article and Find Full Text PDF

Since off-target effects in non-viral siRNA delivery are quite common but not well understood, in this study various polymer-related effects observed in transfection studies were described and their mechanisms of toxicity were investigated. A variety of stably luciferase-expressing cell lines was compared concerning polymer-mediated effects after transfection with polyplexes of siRNA and poly(ethylene imine) (PEI) or poly(ethylene glycol)-grafted PEI (PEG-PEI). Cell viability, LDH release, gene expression profiles of apoptosis-related genes and promoter activation were investigated.

View Article and Find Full Text PDF

Here we describe a northern blot procedure that allows the detection of endogenous RNAs as small as approximately 14 nt in total RNA extracts from bacteria. RNAs that small and as part of total bacterial RNA extracts usually escape detection by northern blotting. The approach combines LNA probes 5'-digoxigenin-endlabeled for non-radioactive probe detection with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide-mediated chemical crosslinking of RNAs to nylon membranes, and necessitates the use of native PAGE either with the TBE or MOPS buffer system.

View Article and Find Full Text PDF

Evolutionary conserved mitochondrial nucleases are involved in programmed cell death and normal cell proliferation in lower and higher eukaryotes. The endo/exonuclease Nuc1p, also termed 'yeast Endonuclease G (EndoG)', is a member of this class of enzymes that differs from mammalian homologs by the presence of a 5'-3' exonuclease activity in addition to its broad spectrum endonuclease activity. However, this exonuclease activity is thought to be essential for a function of the yeast enzyme in DNA recombination and repair.

View Article and Find Full Text PDF