Biophys Rev (Melville)
December 2022
Organ morphogenesis is driven by cellular migration patterns, which become accessible for observation in organoid cultures. We demonstrate here that mammary gland organoids cultured from human primary cells, exhibit oscillatory and collective migration patterns during their development into highly branched structures, as well as persistent rotational motion within the developed alveoli. Using high-resolution live-cell imaging, we observed cellular movement over the course of several days and subsequently characterized the underlying migration pattern by means of optical flow algorithms.
View Article and Find Full Text PDFBiophys Rev (Melville)
June 2021
Cell-driven plastic remodeling of the extracellular matrix (ECM) is a key regulator driving cell invasion and organoid morphogenesis in 3D. While, mostly, the linear properties are reported, the nonlinear and plastic property of the used matrix is required for these processes to occur. Here, we report on the nonlinear and plastic mechanical properties of networks derived from collagen I, Matrigel, and related hybrid gels and link their mechanical response to the underlying collagen structure.
View Article and Find Full Text PDFOrgan development involves complex shape transformations driven by active mechanical stresses that sculpt the growing tissue . Epithelial gland morphogenesis is a prominent example where cylindrical branches transform into spherical alveoli during growth. Here we show that this shape transformation is induced by a local change from anisotropic to isotropic tension within the epithelial cell layer of developing human mammary gland organoids.
View Article and Find Full Text PDFHere we present an experimental model for human luminal progenitor cells that enables single, primary cells isolated from normal tissue to generate complex branched structures resembling the ductal morphology of low-grade carcinoma of no special type. Thereby, we find that ductal structures are generated through invasive branching morphogenesis via matrix remodeling and identify reduced actomyosin contractility as a prerequisite for invasion. In addition, we show that knockout of E-cadherin causes a dissolution of duct formation as observed in invasive lobular carcinoma, a subtype of invasive carcinomas where E-cadherin function is frequently lost.
View Article and Find Full Text PDFControlling the structure formation of gold nanoparticle aggregates is a promising approach towards novel applications in many fields, ranging from (bio)sensing to (bio)imaging to medical diagnostics and therapeutics. To steer structure formation, the DNA-DNA interactions of DNA strands that are coated on the surface of the particles have become a valuable tool to achieve precise control over the interparticle potentials. In equilibrium approaches, this technique is commonly used to study particle crystallization and ligand binding.
View Article and Find Full Text PDF