FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma.
View Article and Find Full Text PDFHaemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing.
View Article and Find Full Text PDFIntracellular Toll-like receptors (TLRs) are key components of the innate immune system. Their expression in antigen-presenting cells (APCs), and in particular dendritic cells (DCs), makes them critical in the induction of the adaptive immune response. In DCs, they interact with the chaperone UNC93B1 that mediates their trafficking from the endoplasmic reticulum (ER) to endosomes where they are cleaved by proteases and activated.
View Article and Find Full Text PDFNumerous evidences support that microglia contributes to the progression of Alzheimer's disease. P2X4 receptors are ATP-gated channels with high calcium permeability, which are de novo expressed in a subset of reactive microglia associated with various pathological contexts, contributing to microglial functions. P2X4 receptors are mainly localized in lysosomes and trafficking to the plasma membrane is tightly regulated.
View Article and Find Full Text PDFMethods Mol Biol
March 2023
Phagocytosis is a process by which specific immune cells such as macrophages or dendritic cells engulf large particles. It is an important innate immune defense mechanism for removing a wide variety of pathogens and apoptotic cells. Following phagocytosis, nascent phagosomes are formed which, when fused to lysosome to become phagolysosome containing acidic proteases, will allow the degradation of ingested material.
View Article and Find Full Text PDFAntigenic peptides derived from introns are presented on major histocompatibility (MHC) class I molecules, but how these peptides are produced is poorly understood. Here, we show that an MHC class I epitope (SL8) sequence inserted in the second intron of the β-globin gene in a C57BL/6 mouse (HBB) generates immune tolerance. Introduction of SL8-specific CD8 T cells derived from OT-1 transgenic mice resulted in a threefold increase in OT-1 T cell proliferation in HBB animals, as compared to wild-type animals.
View Article and Find Full Text PDFCD4 T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized.
View Article and Find Full Text PDFThe Special Issue is dedicated to the 10th Antigen Processing and Presentation Workshop, which took place at Institut Cochin in Paris from May 28th to June 2nd, 2019. It contains several reviews or original articles from contributors to this workshop. It is also a vibrant Tribute to Nilabh Shastri, founder of the APP Workshops, who untimely passed away in 2021 and is deeply missed by his colleagues and friends.
View Article and Find Full Text PDFThe accumulation of protein aggregates is toxic and linked to different diseases such as neurodegenerative disorders, but the role of the immune system to target and destroy aggregate-carrying cells is still relatively unknown. Here we show a substrate-specific presentation of antigenic peptides to the direct MHC class I pathway via autophagy. We observed no difference in presentation of peptides derived from the viral EBNA1 protein following suppression of autophagy by knocking down Atg5 and Atg12.
View Article and Find Full Text PDFDendritic cells (DCs) have the unique capacity to link innate to adaptive immunity. While most cells that express major histocompatibility (MHC) molecules are able to present antigens to activated T cells, DCs possess the means for presenting antigens to naïve T cells, and, as such, are able to instruct T cells to initiate immune response. There are two cascades of events necessary for DCs to start their instructive function.
View Article and Find Full Text PDFBackground: Chloroquine has been used successfully to treat Malaria, including by chloroquine-resistant Plasmodium sp., indicating that it has effects on disease itself. Since heme has inflammatory effects and contributes to the pathogenesis of hemolytic diseases, we hypothesize that the anti-inflammatory effect of chloroquine is partially due to its inhibitory effect on heme-induced macrophage activation and on inflammatory tissue damage.
View Article and Find Full Text PDFThrough the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13 follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking.
View Article and Find Full Text PDFToll-like receptors (TLRs) are key pathogen sensors of the immune system. Their activation results in the production of cytokines, chemokines, and costimulatory molecules that are crucial for innate and adaptive immune responses. In recent years, specific (sub)-cellular location and timing of TLR activation have emerged as parameters for defining the signaling outcome and magnitude.
View Article and Find Full Text PDFToll-like receptor 7 (TLR7) is an endosomal receptor that recognizes single-stranded RNA from viruses. Its trafficking and activation is regulated by the endoplasmic reticulum (ER) chaperone UNC93B1 and lysosomal proteases. UNC93B1 also modulates major histocompatibility complex class II (MHCII) antigen presentation, and deficiency in MHCII protein diminishes TLR9 signaling.
View Article and Find Full Text PDFProteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4 T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen-presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important for example for better vaccination and to prevent autoimmune diseases.
View Article and Find Full Text PDFPhosphoinositide-3 kinases (PI3Ks) generate 3-phosphorylated phosphoinositide lipids that are implicated in many biological processes in homeostatic states and pathologies such as cancer, inflammation and autoimmunity. Eight isoforms of PI3K exist in mammals and among them the class I PI3K, p110γ, and PI3Kδ, and class III Vps34 being the most expressed and well characterized in immune cells. Following engagement of pathogen recognition receptors (PRRs), PI3Ks coordinate vital cellular processes of signaling and vesicular trafficking in innate phagocytes such as macrophages and professional antigen presenting dendritic cells (DCs).
View Article and Find Full Text PDFThe originally published version of this Article contained an error in the subheading "Microglial GR does not affect DN loss triggered by TLR4 and TLR7," which was incorrectly given as "Microglial GR does affect DN loss triggered by TLR2 and TLR4". This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFInflammation is a characteristic feature of Parkinson's disease (PD). We examined the role of TLR9 and its regulation by glucocorticoid receptors (GRs) in degeneration of substantia nigra dopamine neurons (DNs). TLR9 agonist, CpG-ODN, induced DN degeneration in mice lacking GR in microglia but not in controls.
View Article and Find Full Text PDFAntigen cross-presentation by dendritic cells (DC) stimulates cytotoxic T cell activation to promote immunity to intracellular pathogens, viruses and cancer. Phagocytosed antigens generate potent T cell responses, but the signalling and trafficking pathways regulating their cross-presentation are unclear. Here, we show that ablation of the store-operated-Ca-entry regulator STIM1 in mouse myeloid cells impairs cross-presentation and DC migration in vivo and in vitro.
View Article and Find Full Text PDF