Publications by authors named "Benedicte LeBeau"

Bismuth iodide perovskite nanocrystals are considered a viable alternative to the Pb halide ones due to their reduced toxicity and increased stability. However, it is still challenging to fabricate nanocrystals with a small and controlled size, and their electronic properties are not well understood. Here, we propose the growth of Bi iodide perovskite nanocrystals using different mesoporous silica with ordered pores of controlled diameter as templates.

View Article and Find Full Text PDF

Three-dimensional photoactive self-standing porous materials have been synthesized through the integration of soft chemistry and colloids (emulsions, lyotrope mesophases, and P25 titania nanoparticles). Final multiscale porous ceramics bear 700-1000 m g of micromesoporosity depending on the P25 nanoparticle contents. The applied thermal treatment does not affect the P25 anatase/rutile allotropic phase ratio.

View Article and Find Full Text PDF

Heterogenization of the photocatalyst appears to be a valuable solution to reach sustainable processes. Rapid and efficient synthesis of supported photocatalyst is still a remaining challenge and the choice of the support material is crucial. The present study aims at preparing a new generation of hybrid inorganic/organic photocatalysts based on silica mesoporous material and Eosin Y.

View Article and Find Full Text PDF

Safe drinking water is a necessity for every human being, but clean water is scarce and not easily available due to natural geochemical factors or industrial pollutant activity. Many issues involving water quality could be greatly improved using clays as adsorbents. We highlight for the first time, the uptake of fluoride from natural water by Laponite, synthetic hectorite clay, in raw and modified state.

View Article and Find Full Text PDF

Here, combining the evaporation-induced self-assembly (EISA) method and the liquid crystal templating pathway, mesostructured amorphous zirconium oxides have been prepared by a soft templating method without addition of any heteroelement to stabilize the mesopore framework. The recovered materials have been characterized by SAXS measurements, nitrogen adsorption-desorption analysis and X-ray diffraction (XRD). The obtained mesostructured zirconia exhibits a high thermal stability.

View Article and Find Full Text PDF

Binderless pure silica zeolites (zeosils) spheres and hollow spheres with a diameter of 20 µm composed of silicalite-1 nanosheets particles were prepared by pseudomorphic transformation of spherical silica beads using different temperatures (110, 130, and 150 °C) and treatment times (1-5 days) in order to adapt the local dissolution rate of silica to the crystallization rate of silicalite-1 nanosheets allowing to preserve the initial morphology of the silica beads. Fully crystalline beads of 20 µm were obtained at 110 °C for 5 days, whereas hollow spheres similar in size were synthesized at higher temperatures. The crystallization process seems to begin at the outer surface of the amorphous silica beads and spreads with the time in the interior of the beads leading to a dissolution of the inner amorphous part of the beads to create zeosil hollow spheres for the highest treatment temperatures (130 and 150 °C).

View Article and Find Full Text PDF

Albendazole (ABZ, anti-parasitic active pharmaceutical ingredient) is a crystalline low water-soluble drug, thus the dissolution rate in gastrointestinal fluids is limited. Consequently, the improvement of the water solubility and dissolution rate of ABZ implies a great challenge for a more efficient treatment of hydatidosis. In this context, SBA-15 and SBA-16 ordered mesoporous silica materials were synthetized and loaded with ABZ.

View Article and Find Full Text PDF

Hierarchical *BEA-type nanosponges zeolite with a high external surface area (116 m.g) and small crystal size, synthesized in the presence of a dual-porogenic organic compound, were modified with a cationic surfactant (HDTMABr: hexadecyltrimethyl ammonium bromide) in order to create a new anion exchanger system: the surfactant-modified zeolite nanosponges (SMZ). For comparison, two other surfactant-modified *BEA-type zeolite materials, SMZ and SMZ, were obtained by modifying the synthesized conventional micron-size microcrytals and nanocrystals *BEA-type zeolite with HDTMABr, respectively.

View Article and Find Full Text PDF

Binderless zeolite macrostructures in the form of ZK-4 microspheres were prepared using anion-exchange resin beads as shape-directing macrotemplates. The particles were synthesized under hydrothermal conditions at different temperatures and treatment times. The influence of the different synthesis parameters was investigated by X-ray diffraction, scanning electron microscopy, fluorescence X, nitrogen adsorption measurements and Si solid-state NMR.

View Article and Find Full Text PDF

Low-cost tubular macroporous supports for ceramic membranes were elaborated using the extrusion method, followed by curing, debinding, and sintering processes, from a powder mixture containing kaolin, starch, and sand. The obtained substrates were characterized using mercury intrusion porosimetry, water absorption test, water permeability, scanning electron microscopy, and three-point bending test to evaluate the effects of the additives on the relevant characteristics. According to experimental results, adding the starch ratio to the kaolin powder shows a notable impact on the membrane porosity and consequently on the water permeability of the tubular supports, whereas their mechanical strength decreased compared to those prepared from kaolin alone.

View Article and Find Full Text PDF

The one pot synthesis of dual mesoporous titania (2.3 and 7.7 nm) has been achieved from a mixture of fluorinated and Pluronic surfactants.

View Article and Find Full Text PDF

This study concerns cationic exchanges performed in order to remove ammonium and potassium cations from manure by using various zeolites: clinoptilolite, chabazite and NaX faujasite. First, the effect of temperature (25 °C and 40 °C) on the exchange rate between zeolites and an ammonium chloride solution was investigated. Then, cationic exchanges were performed on these three zeolites using on one side a mixed ammonium and potassium chloride solution reproducing the chemical composition of a swine manure and on the other side the corresponding liquid manure.

View Article and Find Full Text PDF

The formation of a 2D-hexagonal (p6m) silica-based hybrid dual-mesoporous material is investigated in situ by using synchrotron time-resolved small-angle X-ray scattering (SAXS). The material is synthesized from a mixed micellar solution of a nonionic fluorinated surfactant, R(F) 8 (EO)9 (EO=ethylene oxide) and a nonionic triblock copolymer, P123. Both mesoporous networks, with pore dimensions of 3.

View Article and Find Full Text PDF

Characterized by a regular porosity in terms of pore size and pore network arrangement, ordered mesoporous solids have attracted increasing interest in the last two decades. These materials have been identified as potential candidates for several applications. However, more environmentally friendly and economical synthesis routes of mesoporous silica materials were found to be necessary in order to develop these applications on an industrial scale.

View Article and Find Full Text PDF

In this work we present a novel method for synthesis of aluminosilicate nanotubes: the fluoride route. F-containing imogolite (F-IMO) exhibits an improved crystallization rate and improved yield. The structure of F-IMO was investigated and compared with F-free imogolite (IMO) by means of X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR) confirming imogolite structure.

View Article and Find Full Text PDF

Over the past ten years, understanding the self-assembly process within mesostructured silica films has been a major concern. Our characterization approach relies on two powerful and complementary techniques: in situ time-resolved FTIR spectroscopy and ex situ solid-state NMR. As model systems, three silica/surfactant films displaying various degrees of mesostructuration were synthesized using an amphiphilic block copolymer (PEO-b-PPO-b-PEO) via a UV light induced self-assembly process.

View Article and Find Full Text PDF

PIC (Phase Inversion Composition) O-W nanoemulsions was used as a template for the synthesis of Hierarchical Porous Silica (HPS), and the oil phase of the nanoemulsion was used as a nanoreactor for the preparation of magnetic gamma-Fe(2)O(3) nanoparticles, confined within the silica matrix.

View Article and Find Full Text PDF

The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics.

View Article and Find Full Text PDF

Single- as well as multi-anchored cyclam-functionalized silica samples have been prepared by grafting amorphous silica gel (K60) and mesostructured silica (SBA-15) with silylated cyclam precursors bearing one, two, or four triethoxysilyl groups, respectively ascribed to cyclam-mono, cyclam-di, and cyclam-tetra. Their reactivity toward copper(II) has been thoroughly investigated in aqueous solution and discussed with respect to the number of arms tethering the ligand to the silica surface and the structural ordering of the adsorbent in terms of capacity, long-term stability, and speed of access to the binding sites. Less-than-complete metal ion uptake was always observed, even in excess of cyclam groups with respect to solution-phase Cu(II), suggesting lower stability of immobilized complexes relative to those in solution.

View Article and Find Full Text PDF

Numerous mercaptopropyl-functionalized silica spheres have been prepared by either post-synthesis grafting of MCM-41 and MCM-48 or self-assembly co-condensation of mercaptopropyltrimethoxysilane (MPTMS) or mercaptopropyltriethoxysilane (MPTES) and tetraethoxysilane (TEOS) precursors in hydroalcoholic medium in the presence of a cationic surfactant as templating agent and ammonia as catalyst. These materials of approximately the same particle size and morphology featured different functionalization levels, various degrees of structural order, and variable distribution of thiol groups in the mesopores. Their reactivity in solution has been studied using Hg(II) as model analyte.

View Article and Find Full Text PDF

We have explored in this work the stability and the reactivity of multiarm cyclam-grafted mesoporous silica samples in aqueous solution. A series of hybrid materials have been prepared by grafting silylated cyclam molecules bearing one, two, or four silyl groups onto both amorphous silica gel (K60) and ordered mesoporous silica (SBA15). Under these conditions, cyclam moieties are attached to the silica walls via one, two, or four arms.

View Article and Find Full Text PDF

The organic mol-ecule of title compound, C(30)H(66)N(4)O(6)Si(2) (2+)·2I(-), is located around a centre of symmetry. The structure exhibits disorder of the trieth-oxy groups with the ratios 0.78 (1)/0.

View Article and Find Full Text PDF

The spontaneous nucleation under hydrothermal conditions often leads to aggregation of crystallizing particles, which is an undesired phenomenon when the goal is the preparation of nanocrystals with narrow particle size distribution. The present paper reports on the synthesis of boehmite nanocrystals under hydrothermal conditions. An aqueous aluminum chloride salt solution was first prepared, and the pH was increased to 11 using a 5 M sodium hydroxide solution.

View Article and Find Full Text PDF

A room-temperature sol-gel-based process was used to produce by direct synthesis talc-like organosilicates having hexadecyl or aminopropyl groups pending in the interlayer space. Thermal analyses, Fourier transform infrared and 13C/29Si solid-state nuclear magnetic resonance spectroscopies confirmed the presence of organic moieties bonded to the inorganic network. Exfoliation of these organoclays in polar solvents such as water for the positively charged magnesium phyllo(aminopropyl)silicate, and in low polar solvents such as toluene and chloroform for hydrophobic magnesium phyllo(hexadecyl)silicate, was investigated by TEM.

View Article and Find Full Text PDF