Publications by authors named "Benedicte Brounais-Le-Royer"

Background: Ewing sarcoma (ES), the second main pediatric bone sarcoma, is characterised by a chromosomal translocation leading to the formation of fusion proteins like EWS::FLI1. While several studies have shown that potassium channels drive the development of many tumours, limited data exist on ES. This work therefore aimed to study the transcriptional regulation of KCNA2 and define the involvement of the Kv1.

View Article and Find Full Text PDF

Ewing sarcoma (ES) is characterized by EWS::FLI1 or EWS::ERG fusion proteins. Knowing that ion channels are involved in tumorigenesis, this work aimed to study the involvement of the KCNN1 gene, which encodes the SK1 potassium channel, in ES development. Bioinformatics analyses from databases were used to study KCNN1 expression in patients and cell lines.

View Article and Find Full Text PDF

Objectives: Investigation of the therapeutic effect of zoledronic acid (ZA) in a preclinical model of jaw osteosarcoma (JO).

Materials And Methods: The effect of 100 μg/kg ZA administered twice a week was assessed in a xenogenic mouse model of JO. The clinical (tumor growth, development of lung metastasis), radiological (bone microarchitecture by micro-CT analysis), and molecular and immunohistochemical (TRAP, RANK/RANKL, VEGF, and CD146) parameters were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Ewing sarcoma (ES) is the second most common bone cancer in young people in Europe, affecting about 7.5 children out of every million.
  • Since the 1980s, treatments like chemotherapy and surgery have improved survival rates to 70% for some patients, but those who don't respond well or have cancer spread in their lungs have much lower survival rates.
  • New therapies are urgently needed because the chances of survival haven't improved much over the years, and the cancer is linked to a specific genetic change involving the EWS-FLI1 fusion protein.
View Article and Find Full Text PDF

Background: Osteoclasts are major actors in the maintenance of bone homeostasis. The full functional maturation of osteoclasts from monocyte lineage cells is essential for the degradation of old/damaged bone matrix. Diuron is one of the most frequently encountered herbicides, particularly in water sources.

View Article and Find Full Text PDF

TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies.

View Article and Find Full Text PDF

Despite advances in clinical management, osteosarcoma and Ewing sarcoma, the two most frequent malignant primary bone tumors at pediatric age, still have a poor prognosis for high-risk patients (i.e., relapsed or metastatic disease).

View Article and Find Full Text PDF

Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient's lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction.

View Article and Find Full Text PDF

Background: The poor survival rate of patients with osteosarcoma (OS), specifically with metastases at diagnosis, undergoes the urgency to develop new therapeutic strategies. Although we recently demonstrated the key role of YAP/TEAD signaling in the growth of OS primary tumor, the molecular mechanisms by which YAP regulates metastases development remain poorly understood.

Methods: The molecular mechanisms by which YAP regulates metastases development were studied using an overexpression of mutated forms of YAP able or not able to interact with TEAD.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common malignant bone tumor in children and teenagers. In many cases, such as poor response to treatment or the presence of metastases at diagnosis, the survival rate of patients remains very low. Although in the literature, more and more studies are emerging on the role of Ubiquitin-Specific Proteases (USPs) in the development of many cancers, few data exist regarding OS.

View Article and Find Full Text PDF

High-grade osteosarcomas are the most frequent malignant bone tumors in the pediatric population, with 150 patients diagnosed every year in France. Osteosarcomas are associated with low survival rates for high risk patients (metastatic and relapsed diseases). Knowing that the canonical Wnt signaling pathway (Wnt/β-catenin) plays a complex but a key role in primary and metastatic development of osteosarcoma, the aim of this work was to analyze the effects of ICG-001, a CBP/β-catenin inhibitor blocking the β-catenin dependent gene transcription, in three human osteosarcoma cell lines (KHOS, MG63 and 143B).

View Article and Find Full Text PDF

Although some studies suggested that disruption of the Hippo signaling pathway is associated with osteosarcoma progression, the molecular mechanisms by which YAP regulates primary tumor growth is not fully clarified. In addition, the validation of YAP as a therapeutic target through the use of inhibitors in a preclinical model must be demonstrated. RNA-seq analysis and Kaplan-Meier assays identified a YAP signature in osteosarcoma patients and a correlation with patients' outcomes.

View Article and Find Full Text PDF

Osteosarcoma (OS) and Ewing's sarcoma (ES) are the most common malignant bone tumors in children and adolescents. In many cases, the prognosis remains very poor. The Sonic hedgehog (SHH) signaling pathway, strongly involved in the development of many cancers, regulate transcription via the transcriptional factors Gli1-3.

View Article and Find Full Text PDF

The primary retention of molars observed in clinic corresponds to a still-unexplained absence of molar eruption despite the presence of an eruption pathway, resembling the experimental transient inhibition of RANKL signaling in mice. The aim of the present study was to confront the hypothesis according to which the primary retention of molars is associated with transitory perturbations to RANKL signaling during growth as part of a wider craniofacial skeleton pattern. The experimental strategy was based on combining a clinical study and an animal study corresponding to the characterization of the craniofacial phenotypes of patients with primary retention of molars and analyses in mice of the consequences of transient inhibition of RANKL signaling on molar eruption and craniofacial growth.

View Article and Find Full Text PDF

Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors. Despite intensive basic and medical research studies to discover new therapeutics and to improve current treatments, almost 40% of osteosarcoma and Ewing sarcoma patients succumb to the disease. Patients with poor prognosis are related to either the presence of metastases at diagnosis or resistance to chemotherapy.

View Article and Find Full Text PDF

Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy.

View Article and Find Full Text PDF

Gap junctions are transmembrane structures that directly connect the cytoplasm of adjacent cells, making intercellular communications possible. It has been shown that the behaviour of several tumours - such as bone tumours - is related to gap junction intercellular communications (GJIC). Several methodologies are available for studying GJIC, based on measuring different parameters that are useful for multiple applications, such as the study of carcinogenesis for example.

View Article and Find Full Text PDF

Osteosarcomas are the most prevalent malignant primary bone tumors in children. Despite intensive efforts to improve both chemotherapeutics and surgical management, 40% of all osteosarcoma patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma remains poor; less than 30% of patients who present metastases will survive five years after initial diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • Histone modifications help control gene activities, and BET proteins play a key role in bone health.
  • A study shows that using a special drug called JQ1 can help fix bone loss in osteoporosis by improving bone strength and structure.
  • JQ1 works by blocking certain proteins that cause bone loss and helping bone-building cells, showing that targeting BET proteins could be a new way to treat osteoporosis.
View Article and Find Full Text PDF

Purpose: Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants the development of new strategies to improve overall patient survival. Among them, HSP90 is a molecular chaperone involved in the maturation and stability of various oncogenic proteins leading to tumor cells survival and disease progression. We assessed the antitumor properties of a synthetic HSP90 inhibitor, PF4942847, alone or in combination with zoledronic acid in osteosarcoma.

View Article and Find Full Text PDF

Different macrophage depletion strategies have demonstrated a vital role of macrophages in bone healing, but the underlying molecular mechanisms are poorly understood. Here, with the use of a mouse model of tibia injury, we found that the cytokine oncostatin M [OSM or murine (m)OSM] was overexpressed during the initial inflammatory phase and that depletion of macrophages repressed mOSM expression. In Osm(-/-) mice, by micro-computed tomography and histology we observed a significant reduction in the amount of new intramedullar woven bone formed at the injured site, reduced number of Osterix(+) osteoblastic cells, and reduced expression of the osteoblast markers runt-related transcription factor 2 and alkaline phosphatase.

View Article and Find Full Text PDF

Inflammatory bowel diseases are commonly complicated by weight and bone loss. We hypothesized that IL-15, a pro-inflammatory cytokine expressed in colitis and an osteoclastogenic factor, could play a central role in systemic and skeletal complications of inflammatory bowel diseases. We evaluated the effects of an IL-15 antagonist, CRB-15, in mice with chronic colitis induced by oral 2% dextran sulfate sodium for 1 week, followed by another 1% for 2 weeks.

View Article and Find Full Text PDF