Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here we have optimized 2-aminopyrimidine-based macrocycles to use these compounds as chemical tools for the ephrin kinase family. Starting with a promiscuous macrocyclic inhibitor, , we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases.
View Article and Find Full Text PDFMembers of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/β-catenin pathway, which promotes the degradation of β-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function.
View Article and Find Full Text PDFMammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 () to selectively target MST3/4.
View Article and Find Full Text PDFMacrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here, we developed a 2-aminopyrimidine-based macrocyclic dual EPHA2/GAK kinase inhibitor as a chemical tool to study the role of these two kinases in viral entry and assembly. Starting with a promiscuous macrocyclic inhibitor, , we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases.
View Article and Find Full Text PDFBromodomain and extra-terminal domain (BET) proteins and histone deacetylases (HDACs) are prime targets in cancer therapy. Recent research has particularly focused on the development of dual BET/HDAC inhibitors for hard-to-treat tumors, such as pancreatic cancer. Here, we developed a new series of potent dual BET/HDAC inhibitors by choosing starting scaffolds that enabled us to optimally merge the two functionalities into a single compound.
View Article and Find Full Text PDFMST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis.
View Article and Find Full Text PDFKinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. However, the high sequence and structural conservation of the catalytic kinase domain complicate the development of selective kinase inhibitors. Inhibition of off-target kinases makes it difficult to study the mechanism of inhibitors in biological systems.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling is mediated by transmembrane protein kinases that form heterotetramers consisting of type-I and type-II receptors. Upon BMP binding, the constitutively active type-II receptors activate specific type-I receptors by transphosphorylation, resulting in the phosphorylation of SMAD effector proteins. Drug discovery in the receptor tyrosine kinase-like (TKL) family has largely focused on type-I receptors, with few inhibitors that have been published targeting type-II receptors.
View Article and Find Full Text PDFWell-characterized small molecules are essential tools for studying the biology and therapeutic relevance of a target protein. However, many compounds reported in the literature and routinely studied in biomedical research lack the potency and selectivity required for mechanistic cellular studies on the function of a given protein. Furthermore, commercially available compounds often do not include useful tools developed by industry as part of their research and development efforts, as they frequently remain proprietary.
View Article and Find Full Text PDFKinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. The high sequence and structural conservation of the catalytic kinase domain complicates the development of specific kinase inhibitors. As a consequence, most kinase inhibitors also inhibit off-target kinases which complicates the interpretation of phenotypic responses.
View Article and Find Full Text PDFCasein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms.
View Article and Find Full Text PDFThe highly conserved catalytic sites in protein kinases make it difficult to identify ATP competitive inhibitors with kinome-wide selectivity. Serendipitously, during a dedicated fragment campaign for the focal adhesion kinase (FAK), a scaffold that had lost its initial FAK affinity showed remarkable potency and selectivity for serine-arginine-protein kinases 1-3 (SRPK1-3). Non-conserved interactions with the uniquely structured hinge region of the SRPK family were the key drivers of the exclusive selectivity of the discovered fragment hit.
View Article and Find Full Text PDFLIMKs are important regulators of actin and microtubule dynamics, and they play essential roles in many cellular processes. Deregulation of LIMKs has been linked to the development of diverse diseases, including cancers and cognitive disabilities, but well-characterized inhibitors known as chemical probes are still lacking. Here, we report the characterization of three highly selective LIMK1/2 inhibitors covering all canonical binding modes (type I/II/III) and the structure-based design of the type II/III inhibitors.
View Article and Find Full Text PDFRNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex.
View Article and Find Full Text PDFE3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options.
View Article and Find Full Text PDFSerine/threonine kinase 17A (death-associated protein kinase-related apoptosis-inducing protein kinase 1─DRAK1) is a part of the death-associated protein kinase (DAPK) family and belongs to the so-called dark kinome. Thus, the current state of knowledge of the cellular function of DRAK1 and its involvement in pathophysiological processes is very limited. Recently, DRAK1 has been implicated in tumorigenesis of glioblastoma multiforme (GBM) and other cancers, but no selective inhibitors of DRAK1 are available yet.
View Article and Find Full Text PDFImatinib, a selective inhibitor of the breakpoint cluster region (BCR)-ABL kinase, is the poster child for targeted cancer therapeutics. However, its efficacy is limited by resistance mutations. Using a quantitative bioluminescence resonance energy transfer assay in living cells, we identified ABL kinase mutations that could cause imatinib resistance by altering drug residence time.
View Article and Find Full Text PDFThe cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2.
View Article and Find Full Text PDFProtein kinase inhibitors are potent anticancer therapeutics. For example, the Bcr-Abl kinase inhibitor imatinib decreases mortality for chronic myeloid leukemia by 80%, but 22 to 41% of patients acquire resistance to imatinib. About 70% of relapsed patients harbor mutations in the Bcr-Abl kinase domain, where more than a hundred different mutations have been identified.
View Article and Find Full Text PDFThis protocol is used to profile the engagement of kinase inhibitors across nearly 200 kinases in a live-cell context. This protocol utilizes one single kinase tracer (NanoBRET(TM) Tracer K10) that operates quantitatively at four different concentrations. Minimizing the number of tracers offers a significant workflow improvement over the previous protocol that utilized a combination of 6 tracers.
View Article and Find Full Text PDFCASK (Ca/calmodulin-dependent Ser/Thr kinase) is a member of the MAGUK (membrane-associated guanylate kinase) family that functions as neurexin kinases with roles implicated in neuronal synapses and trafficking. The lack of a canonical DFG motif, which is altered to GFG in CASK, led to the classification as a pseudokinase. However, functional studies revealed that CASK can still phosphorylate substrates in the absence of divalent metals.
View Article and Find Full Text PDFDiscoidin domain receptors 1 and 2 (DDR1/2) play a central role in fibrotic disorders, such as renal and pulmonary fibrosis, atherosclerosis, and various forms of cancer. Potent and selective inhibitors, so-called chemical probe compounds, have been developed to study DDR1/2 kinase signaling. However, these inhibitors showed undesired activity on other kinases such as the tyrosine protein kinase receptor TIE or tropomyosin receptor kinases, which are related to angiogenesis and neuronal toxicity.
View Article and Find Full Text PDFSLK (STE20-like kinase) and STK10 (serine/threonine kinase 10) are closely related kinases whose enzymatic activity is linked to the regulation of ezrin, radixin, and moesin function and to the regulation of lymphocyte migration and the cell cycle. We identified a series of 3-anilino-4-arylmaleimides as dual inhibitors of SLK and STK10 with good kinome-wide selectivity. Optimization of this series led to multiple SLK/STK10 inhibitors with nanomolar potency.
View Article and Find Full Text PDF