Establishing the cortical neural representation of visual stimuli is a central challenge of systems neuroscience. Publicly available data would allow a broad range of scientific analyses and hypothesis testing, but are rare and largely focused on the early visual system. To address the shortage of open data from higher visual areas, we provide a comprehensive dataset from a neurophysiology study in macaque monkey visual cortex that includes a complete record of extracellular action potential recordings from the extrastriate medial superior temporal (MST) area, behavioral data, and detailed stimulus records.
View Article and Find Full Text PDFModern accounts of visual motion processing in the primate brain emphasize a hierarchy of different regions within the dorsal visual pathway, especially primary visual cortex (V1) and the middle temporal area (MT). However, recent studies have called the idea of a processing pipeline with fixed contributions to motion perception from each area into doubt. Instead, the role that each area plays appears to depend on properties of the stimulus as well as perceptual history.
View Article and Find Full Text PDFPrimate visual cortex consists of dozens of distinct brain areas, each providing a highly specialized component to the sophisticated task of encoding the incoming sensory information and creating a representation of our visual environment that underlies our perception and action. One such area is the medial superior temporal cortex (MST), a motion-sensitive, direction-selective part of the primate visual cortex. It receives most of its input from the middle temporal (MT) area, but MST cells have larger receptive fields and respond to more complex motion patterns.
View Article and Find Full Text PDF