Publications by authors named "Benedetto Ruperti"

Background: The root of a plant is a fundamental organ for the multisensory perception of the environment. Investigating root growth dynamics as a mean of their interaction with the environment is of key importance for improving knowledge in plant behaviour, plant biology and agriculture. To date, it is difficult to study roots movements from a dynamic perspective given that available technologies for root imaging focus mostly on static characterizations, lacking temporal and three-dimensional (3D) spatial information.

View Article and Find Full Text PDF

Lowering the storage temperature is an effective method to extend the postharvest and shelf life of fruits. Nevertheless, this technique often leads to physiological disorders, commonly known as chilling injuries. Apples and pears are susceptible to chilling injuries, among which superficial scald is the most economically relevant.

View Article and Find Full Text PDF

In life, it is common for almost every kind of organism to interact with one another. In the human realm, such interactions are at the basis of joint actions, when two or more agents syntonize their actions to achieve a common goal. Shared intentionality is the theoretical construct referring to the suite of abilities that enable such coordinated and collaborative interactions.

View Article and Find Full Text PDF

Dry yeast extracts (DYE) are applied to vineyards to improve aromatic and secondary metabolic compound content and wine quality; however, systematic information on the underpinning molecular mechanisms is lacking. This work aimed to unravel, through a systematic approach, the metabolic and molecular responses of Sauvignon Blanc berries to DYE treatments. To accomplish this, DYE spraying was performed in a commercial vineyard for two consecutive years.

View Article and Find Full Text PDF

"How" an action is performed is not solely determined by biomechanical constraints, but it depends on the agent's intention, that is, "why" the action is performed. Recent findings suggest that intentions can be specified at a tangible and quantifiable level in the kinematics of movements; that is, different motor intentions translate into different kinematic patterns. In the present study, we used 3D kinematical analysis to investigate whether the organization of climbing plants' approach-to-grasp action is sensitive to the kind of intention driving their movement toward potential support, namely individual or social.

View Article and Find Full Text PDF

Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison.

View Article and Find Full Text PDF

(L.) Moench is one of the most economically important medicinal plants, cultivated worldwide for its high medicinal value and with several industrial applications in both pharmaceutical and food industries. Thanks to its various phytochemical contents, including caffeic acid derivatives (CADs), extracts have antioxidant, anti-inflammatory, and immuno-stimulating properties.

View Article and Find Full Text PDF

the Arabidopsis homolog, has been proposed to have a causative role in grapevine stenospermocarpy. An association between a mutation in the coding sequence (CDS) and the seedless phenotype was reported, however, no working mechanisms have been demonstrated yet. We performed a deep investigation of the full gene sequence in a collection of grapevine varieties belonging to several seedlessness classes that revealed three different promoter-CDS combinations.

View Article and Find Full Text PDF

Superficial scald is a post-harvest chilling storage injury leading to browning of the surface of the susceptible cv Granny Smith apples. Wounding of skins has been reported to play a preventive role on scald development however its underlying molecular factors are unknown. We have artificially wounded the epidermal and sub-epidermal layers of apple skins consistently obtaining the prevention of superficial scald in the surroundings of the wounds during two independent vintages.

View Article and Find Full Text PDF

In maize, nitrate regulates root development thanks to the coordinated action of many players. In this study, the involvement of strigolactones (SLs) and auxin as putative components of the nitrate regulation of lateral root (LR) was investigated. To this aim, the endogenous SL content of maize root in response to nitrate was assessed by liquid chromatography with tandem mass Spectrometry (LC-MS/MS) and measurements of LR density in the presence of analogues or inhibitors of auxin and SLs were performed.

View Article and Find Full Text PDF

Abscission has significant implications in agriculture and several efforts have been addressed by researchers to understand its regulatory steps in both model and crop species. Among the main players in abscission, ethylene has exhibited some fascinating features, in that it was shown to be involved at different stages of abscission induction and, in some cases, with interesting roles also within the abscising organ at the very early stages of the process. This review summarizes the current knowledge about the role of ethylene both at the level of the abscission zone and within the shedding organ, pointing out the missing pieces of the very complicated puzzle of the abscission process in the different species.

View Article and Find Full Text PDF

The accumulation of secondary metabolites and the regulation of tissue acidity contribute to the important traits of grape berry and influence plant performance in response to abiotic and biotic factors. In several plant species a highly conserved MYB-bHLH-WD (MBW) transcriptional regulatory complex controls flavonoid pigment synthesis and transport, and vacuolar acidification in epidermal cells. An additional component, represented by a WRKY-type transcription factor, physically interacts with the complex increasing the expression of some target genes and adding specificity for other targets.

View Article and Find Full Text PDF

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc ( L.

View Article and Find Full Text PDF

The short-term (24 h) responses of apple fruit (cv. 'Granny Smith') to a shift in the oxygen concentration from 0.4 to 0.

View Article and Find Full Text PDF

Plants respond to gravitational force through directional growth along the gravity vector. Although auxin is the central component of the root graviresponse, it works in concert with other plant hormones. Here, we show that the folate precursor -aminobenzoic acid (PABA) is a key modulator of the auxin-ethylene interplay during root gravitropism in Arabidopsis ().

View Article and Find Full Text PDF

In plants as well as other organisms, protein localization alone is insufficient to provide a mechanistic link between stimulus and process regulation. This is because protein-protein interactions are central to the regulation of biological processes. However, they remain very difficult to detect in situ, with the choice of tools for the detection of protein-protein interaction in situ still in need of expansion.

View Article and Find Full Text PDF

Fruits stored at low temperature can exhibit different types of chilling injury. In apple, one of the most serious physiological disorders is superficial scald, which is characterized by discoloration and brown necrotic patches on the fruit exocarp. Although this phenomenon is widely ascribed to the oxidation of α-farnesene, its physiology is not yet fully understood.

View Article and Find Full Text PDF

A small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from promotes vacuolar acidification in petal epidermal cells whereas TTG2 from enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized identified as the closest grapevine homolog of and .

View Article and Find Full Text PDF

The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.

View Article and Find Full Text PDF

Rapid advances in microscopy have boosted research on cell biology. However sample preparation enabling excellent reproducible tissue preservation and cell labeling for in depth microscopic analysis of inner cell layers, tissues and organs still represents a major challenge for immunolocalization studies. Here we describe a protocol for whole-mount immunolocalization of proteins which is applicable to a wide range of plant species.

View Article and Find Full Text PDF

Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. 'Superficial scald' of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis.

View Article and Find Full Text PDF

Background And Aims: The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants.

Methods: Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species.

View Article and Find Full Text PDF

Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise.

View Article and Find Full Text PDF

Background And Aims: The Mob1 family includes a group of kinase regulators conserved throughout eukaryotes. In multicellular organisms, Mob1 is involved in cell proliferation and apoptosis, thus controlling appropriate cell number and organ size. These functions are also of great importance for plants, which employ co-ordinated growth processes to explore the surrounding environment and respond to changing external conditions.

View Article and Find Full Text PDF

Apple (Malus domestica) fruitlet abscission represents an interesting model system to study the early phases of the shedding process, during which major transcriptomic changes and metabolic rearrangements occur within the fruit. In apple, the drop of fruits at different positions within the cluster can be selectively magnified through chemical thinners, such as benzyladenine and metamitron, acting as abscission enhancers. In this study, different abscission potentials were obtained within the apple fruitlet population by means of the above-cited thinners.

View Article and Find Full Text PDF