Publications by authors named "Benedetto Rugani"

The management of soil excavated during construction can lead to substantial environmental impact, especially in Luxembourg, where high per capita soil waste and limited landfill capacity intensify the challenge. This study employs an ad hoc spatially resolved model to assess the environmental impacts of current excavated soil management practices in Luxembourg from a life cycle perspective. It compares these impacts with alternative scenarios, where excavated soil is reproposed as substrate for nature-based solution (NbS) projects rather than backfilled.

View Article and Find Full Text PDF

Climate change and biodiversity loss are two pressing global environmental challenges that are tightly coupled to urban processes. Cities emit greenhouse gases through the consumption of materials and energy. Urban expansion encroaches on local habitats, while urban land teleconnections simultaneously degrade distant ecosystems.

View Article and Find Full Text PDF

The consequence of the lockdowns implemented to address the COVID-19 pandemic on human health damage due to air pollution and other environmental issues must be better understood. This paper analyses the effect of reducing energy demand on the evolution of environmental impacts during the occurrence of 2020-lockdown periods in Italy, with a specific focus on life expectancy. An energy metabolism analysis is conducted based on the life cycle assessment (LCA) of all monthly energy consumptions, by sector, category and province area in Italy between January 2015 to December 2020.

View Article and Find Full Text PDF

The integration of ecosystem service (ES) assessment with life cycle assessment (LCA) is important for developing decision support tools for environmental sustainability. A prequel study has proposed a 4-step methodology that integrates the ES cascade framework within the cause-effect chain of life cycle impact assessment (LCIA) to characterize the physical and monetary impacts on ES provisioning due to human interventions. We here follow the suggested steps in the abovementioned study, to demonstrate the first application of the integrated ES-LCIA methodology and the added value for LCA studies, using a case study of rice farming in the United States, China, and India.

View Article and Find Full Text PDF

Stringent lockdown measures implemented in Italy to mitigate the spread of COVID-19 are generating unprecedented economic impacts. However, the environmental consequences associated with the temporary shutdown and recovery of industrial and commercial activities are still not fully understood. Using the well-known carbon footprint (CF) indicator, this paper provides a comprehensive estimation of environmental effects due to the COVID-19 outbreak lockdown measures in Italy.

View Article and Find Full Text PDF

The assessment of ecosystem services (ES) is covered in a fragmented manner by environmental decision support tools that provide information about the potential environmental impacts of supply chains and their products, such as the well-known Life Cycle Assessment (LCA) methodology. Within the flagship project of the Life Cycle Initiative (hosted by UN Environment), aiming at global guidance for life cycle impact assessment (LCIA) indicators, a dedicated subtask force was constituted to consolidate the evaluation of ES in LCA. As one of the outcomes of this subtask force, this paper describes the progress towards consensus building in the LCA domain concerning the assessment of anthropogenic impacts on ecosystems and their associated services for human well-being.

View Article and Find Full Text PDF

In order to consider the effects of land use, and the land cover changes it causes, on ecosystem services in life cycle assessment (LCA), a new methodology is proposed and applied to calculate midpoint and endpoint characterization factors. To do this, a cause-effect chain was established in line with conceptual models of ecosystem services to describe the impacts of land use and related land cover changes. A high-resolution, spatially explicit and temporally dynamic modeling framework that integrates land use and ecosystem services models was developed and used as an impact characterization model to simulate that cause-effect chain.

View Article and Find Full Text PDF

For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'.

View Article and Find Full Text PDF

The analysis of ecosystem services (ES) is becoming a key-factor to implement policies on sustainable technologies. Accordingly, life cycle impact assessment (LCIA) methods are more and more oriented toward the development of harmonized characterization models to address impacts on ES. However, such efforts are relatively recent and have not reached full consensus yet.

View Article and Find Full Text PDF

The Kyoto protocol has established an accounting system for national greenhouse gas (GHG) emissions according to a geographic criterion (producer perspective), such as that proposed by the IPCC guidelines for national GHG inventories. However, the representativeness of this approach is still being debated, because the role of final consumers (consumer perspective) is not considered in the emission allocation system. This paper explores the usefulness of a hybrid analysis, including input-output (IO) and process inventory data, as a complementary tool for estimating and allocating national GHG emissions according to both consumer- and producer-based perspectives.

View Article and Find Full Text PDF

This paper reports the emergy-based evaluation (EME) of the ecological performance of four water treatment plants (WTPs) using three different approaches. The results obtained using the emergy calculation software SCALE (EMESCALE) are compared with those achieved through a conventional emergy evaluation procedure (EMECONV), as well as through the application of the Solar Energy Demand (SED) method. SCALE's results are based on a detailed representation of the chain of technological processes provided by the lifecycle inventory database ecoinvent®.

View Article and Find Full Text PDF

Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable.

View Article and Find Full Text PDF

Scarcity of natural resources and productive land is a global issue affecting the provision of goods and services at the country scale. This is particularly true for small regions with highly developed economies such as Luxembourg, which usually balance the chronic unavailability of resources (in particular with regard to fossil fuels) with an increasing demand of imported raw materials, energy and manufactured commodities. Based on historical time-series analysis (from 1995 to 2009), this paper determines the state of natural capital (NC) utilization in Luxembourg and estimates its ecological deficit (ED).

View Article and Find Full Text PDF

Life Cycle Assessment (LCA) is a widely recognized, multicriteria and standardized tool for environmental assessment of products and processes. As an independent evaluation method, emergy assessment has shown to be a promising and relatively novel tool. The technique has gained wide recognition in the past decade but still faces methodological difficulties which prevent it from being accepted by a broader stakeholder community.

View Article and Find Full Text PDF

The solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.

View Article and Find Full Text PDF