Publications by authors named "Benedetto B"

Article Synopsis
  • Astrocytes are special brain cells that help shape how other brain cells connect and work together, which is super important for a healthy brain.
  • When astrocytes don’t work right, it can lead to serious brain problems, especially during the early stages of brain development.
  • Scientists are studying how these brain cells develop and how problems with them might cause mental disorders. They’re also looking into how differences between boys and girls could affect these processes.
View Article and Find Full Text PDF

Clinical and pre-clinical studies of neuropsychiatric (NP) disorders show altered astrocyte properties and synaptic networks. These are refined during early postnatal developmental (PND) stages. Thus, investigating early brain maturational trajectories is essential to understand NP disorders.

View Article and Find Full Text PDF

Background: Identifying sex-related differences/variables associated with 30 day/1 year mortality in patients with chronic limb-threatening ischemia (CLTI).

Methods: Multicenter/retrospective/observational study. A database was sent to all the Italian vascular surgeries to collect all the patients operated on for CLTI in 2019.

View Article and Find Full Text PDF

Astroglial cells actively partner with several cell types to regulate the arrangement of neuronal circuits both in the developing and adult brain. Morphological features of astroglial cells strongly impact their functional interactions, thereby supporting the hypothesis that aberrancies in glial morphology may trigger the onset of neuropsychiatric disorders. Thus, understanding the factors which modulate astroglial shapes and the development of tools to examine them may help to gain valuable insights about the role of astroglia in physiological and pathological brain states.

View Article and Find Full Text PDF
Article Synopsis
  • Neuroinflammation is being recognized as a significant factor in psychiatric disorders, with proteins like C1q and TSPO gaining attention for their roles in this area.
  • C1q is involved in synaptic pruning and may contribute to neurodegenerative diseases, while TSPO is linked to various biological functions, and both proteins are elevated in conditions like major depression.
  • New research indicates that compounds that enhance GABA receptor activity, such as neurosteroids and TSPO ligands, could have potential therapeutic effects on depression and anxiety, suggesting new treatment pathways.
View Article and Find Full Text PDF

Positive social relationships are paramount for the survival of mammals and beneficial for mental and physical health, buffer against stressors, and even promote appropriate immune system functioning. By contrast, impaired social relationships, social isolation, or the loss of a bonded partner lead to aggravated physical and mental health. For example, in humans partner loss is detrimental for the functioning of the immune system and heightens the susceptibility for the development of post-traumatic stress disorders, anxiety disorders, and major depressive disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how glia cells and synapses work together in the brain to understand both healthy and sick brains.
  • Glia cells, especially astrocytes, help with the growth and function of synapses and changes in these connections may lead to brain diseases like depression and autism.
  • The research suggests that targeting how astrocytes clean up or change synapses could be a new way to help treat brain disorders.
View Article and Find Full Text PDF

Perivascular astrocyte processes (PAP) surround cerebral endothelial cells (ECs) and modulate the strengthening of tight junctions to influence blood-brain barrier (BBB) permeability. Morphologically altered astrocytes may affect barrier properties and trigger the onset of brain pathologies. However, astrocyte-dependent mediators of these events remain poorly studied.

View Article and Find Full Text PDF

Major depressive disorder is the main cause of disability worldwide with imperfect treatment options. However, novel therapeutic approaches are currently discussed, from augmentation strategies to novel treatments targeting the immune system or the microbiome-gut-brain axis. Therefore, we examined the potential beneficial effects of minocycline, a tetracycline antibiotic with pleiotropic, immunomodulatory action, alone or as augmentation of escitalopram on behavior, prefrontal microglial density, and the gut microbiome in rats selectively bred for high anxiety-like behavior (HAB).

View Article and Find Full Text PDF

The use of immunofluorescent immunohistochemical methods has been instrumental to characterize the distribution and extents of colocalization of molecules located in various cellular compartments. Such information has been pivotal to formulate hypothesis about their roles in physiological and pathological conditions.In the brain, astrocytes interact with endothelial cells to form the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Chromatin immunoprecipitation (ChIP) in conjunction with qPCR or next generation sequencing (ChIP-seq) is used to detect protein-DNA interaction. Typically, DNA bound to a protein of interest is captured with an antibody against this protein, and DNA is then purified from DNA-protein complexes. Here, we describe a native Chromatin immunoprecipitation (N-ChIP) approach which is an efficient ChIP method with high resolution for histone modifications and a number of transcription factors.

View Article and Find Full Text PDF

Background: Thiotepa-busulfan-fludarabine (TBF) is a widely used conditioning regimen in single umbilical cord blood transplantation (SUCBT). More recently, it was introduced in the setting of non-T cell depleted haploidentical stem cell transplantation (NTD-Haplo). Whether TBF based conditioning provides additional benefit in transplantation from a particular alternative donor type remains to be established.

View Article and Find Full Text PDF

Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability.

View Article and Find Full Text PDF
Article Synopsis
  • Morphological changes in astrocytes are linked to major depressive disorder (MDD), with evidence showing reduced blood vessel coverage by aquaporin-4 (AQP-4) in the prefrontal cortex of affected patients.
  • In an animal model of depression, rats bred for high anxiety-like behavior displayed similar reductions in AQP-4-positive astrocyte processes compared to non-anxiety rats.
  • Treatment with the antidepressant fluoxetine improved astrocyte plasticity and increased their processes in non-anxiety rats and restored Basal levels in high anxiety rats, but only if AQP-4 was present, indicating its crucial role in astrocyte function.
View Article and Find Full Text PDF

Long-term potentiation (LTP), a major cellular correlate of memory storage, depends on activation of the ERK/MAPK signalling pathway, but the cell type-specific localization of activated MAPKs remains unknown. We found that in the CA1 field of the hippocampus, shortly after LTP induction, an increase in the number of MAPK-positive cells occurred specifically among astrocytes of the stratum radiatum, suggesting a putative role of astrocytes for LTP. Desipramine (DMI) is an antidepressant which is used to treat major depressive disorder, but also other pathologies such as neuropathic pain or attention-deficit/hyperactivity disorder.

View Article and Find Full Text PDF

Astrocytes orchestrate arrangement and functions of neuronal circuits and of the blood-brain barrier. Dysfunctional astrocytes characterize mood disorders, here showcased by deregulation of the astrocyte end-feet protein Aquaporin-4 around blood vessels and, hypothetically, of the astrocyte-specific phagocytic protein MEGF10 to shape synapses. Development of mood disorders is often a result of 'gene × environment' interactions, regulated among others by histone modifications and related modulator enzymes, which rapidly promote adaptive responses.

View Article and Find Full Text PDF

Neuropsychiatric disorders are devastating mental illnesses with a high economic burden. The additional morbidity associated with social issues that arises along with the course of these diseases increases the need for a clear understanding of their etiopathogenesis to allow an implementation of novel pharmacological strategies. Yet a poor knowledge about interactions occurring at the glia-neuron interface in health and disease still hampers innovative discoveries, despite the fact that glia cells have been long described to actively participate in the regulation of brain circuits.

View Article and Find Full Text PDF

Both the serotonergic and the endocannabinoid system play a major role in mediating fear and anxiety. In the basolateral amygdala (BLA) it has been shown that the cannabinoid receptor 1 (CB1) is highly co-expressed with 5-HT3 receptors on GABAergic interneurons suggesting that 5-HT3 receptor activity modulates CB1-mediated effects on inhibitory synaptic transmission. In the present study, we investigated the possible interactions of CB1 and 5-HT3-mediated neuronal processes in the BLA using electrophysiological and behavioural approaches.

View Article and Find Full Text PDF

Functional alterations in synaptic contacts in specific brain areas are a hallmark of major depressive disorder (MDD). Antidepressant treatments not only readjust the aberrant concentrations of neurotransmitters in the synaptic clefts, but have the capacity to reshape neuronal circuits by affecting synaptogenesis and synaptic stabilization in specific regions of the brain. Nevertheless, the underlying molecular mechanisms are still unclear.

View Article and Find Full Text PDF

The onset of action of antidepressants (ADs) usually takes several weeks, but first molecular responses to these drugs may appear already after acute administration. The Extracellular Signal-regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) signaling pathway is a target of ADs and an important pathway involved in cellular plasticity. In major depressive disorder (MDD), especially the prefrontal cortex (PFC) and hippocampus (Hip) are most likely affected in depressive patients and recent work revealed a hyperactivated ERK signaling in the rat PFC after chronic stress, a precipitating factor for MDD.

View Article and Find Full Text PDF

Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions.

View Article and Find Full Text PDF

Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes.

View Article and Find Full Text PDF