Crit Rev Eukaryot Gene Expr
February 2016
Cells adapt their metabolism and activities in response to signals from their surroundings, and this ability is essential for their survival in the face of environmental changes. In mammalian tissues a deficit of these mechanisms is commonly associated with cellular aging and degenerative diseases related to aging, such as cardiovascular disease, cancer, immune system decline, and neurological pathologies. Several proteins have been identified as able to respond directly to energy, nutrient, and growth factor levels and stress stimuli in order to mediate adaptations in the cell.
View Article and Find Full Text PDFThe molecular mechanisms underlying spermine osteo-inductive activity on human adipose-derived stem cells (ASCs) grown in 3-dimensional (3D) cultures were investigated. Spermine belongs to the polyamine family, naturally occurring, positively charged polycations that are able to control several cellular processes. Spermine was used at a concentration close to that found in platelet-rich plasma (PRP), an autologous blood product containing growth and differentiation factors, which has recently become popular in in vitro and in vivo bone healing and engineering.
View Article and Find Full Text PDFApoptosis is a programmed cell death that plays a critical role in cell homeostasis. In particular, apoptosis in cardiomyocytes is involved in several cardiovascular diseases including heart failure. Recently autophagy has emerged as an important modulator of programmed cell death pathway.
View Article and Find Full Text PDFThe responses of AMP-activated protein kinase (AMPK) and Ornithine decarboxylase (ODC) to isoproterenol have been examined in H9c2 cardiomyoblasts, AMPK represents the link between cell growth and energy availability whereas ODC, the key enzyme in polyamine biosynthesis, is essential for all growth processes and it is thought to have a role in the development of cardiac hypertrophy. Isoproterenol rapidly induced ODC activity in H9c2 cardiomyoblasts by promoting the synthesis of the enzyme protein and this effect was counteracted by inhibitors of the PI3K/Akt pathway. The increase in enzyme activity became significant between 15 and 30min after the treatment.
View Article and Find Full Text PDFRecent studies report that the primary transmitter of sympathetic nervous system norepinephrine (NE), which is actively produced in failing human heart, is able to induce apoptosis of rat cardiomyocytes. Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, therefore representing a potential therapeutic target. The natural occurring polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis.
View Article and Find Full Text PDFChondrocyte survival is closely linked to cartilage integrity, and forms of chondrocyte apoptotic death can contribute to cartilage degeneration in articular diseases. Since growing evidence also implicates polyamines in the control of cell death, we have been investigating the role of polyamine metabolism in chondrocyte survival and apoptosis. Treatment of human C-28/I2 chondrocytes with N(1),N(11)-diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, inhibited polyamine biosynthesis and induced polyamine catabolism, thus rapidly depleting all main polyamines.
View Article and Find Full Text PDFApoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy, and heart failure. The polyamines putrescine, spermidine, and spermine are polycations absolutely required for cell growth and division. However, increasing evidence indicates that polyamines, cell growth, and cell death can be tightly connected.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is characterized by vasoconstriction and by obstructive changes of the pulmonary vasculature including smooth muscle cell proliferation which leads to medial hypertrophy and subsequent luminal narrowing. Sildenafil, an orally active inhibitor of cGMP phosphodiesterase-type-5, exerts pulmonary vasodilator activity in PAH patients. We evaluated the effects of sildenafil on growth of cultured human pulmonary artery smooth muscle cells (PASMC).
View Article and Find Full Text PDFCardiac ischemia may be responsible for either the loss of endothelial nitric oxide synthase (eNOS) or changes in its activity, both conditions leading to coronary dysfunction. We investigated whether early ischemic preconditioning was able to preserve eNOS protein expression and function in the ischemic/reperfused myocardium. Langendorff-perfused rat hearts were subjected to 20 min global ischemia, followed by 30 min reperfusion (I/R).
View Article and Find Full Text PDFActivation of the extracellular signal-regulated kinases (ERKs) 1 and 2 is correlated to cell survival, but in some cases ERKs can act in signal transduction pathways leading to apoptosis. Treatment of mouse fibroblasts with 20 microM etoposide elicited a sustained phosphorylation of ERK 1/2, that increased until 24 h from the treatment in parallel with caspase activity. The inhibitor of ERK activation PD98059 abolished caspase activation, but caspase inhibition did not reduce ERK 1/2 phosphorylation, suggesting that ERK activation is placed upstream of caspases.
View Article and Find Full Text PDFWe previously reported that tumor necrosis factor-alpha (TNF) and lipopolysaccharide (LPS) stimulate DNA synthesis in chick embryo cardiomyocytes (CM) via nitric oxide and polyamine biosynthesis. Here we show an involvement of nuclear factor-kappaB (NF-kappaB) in the induction of nitric oxide synthase (NOS) and ornithine decarboxylase (ODC), the key enzyme in polyamine biosynthesis. In addition NF-kappaB activation appears to favor survival of CM by reducing caspase activation.
View Article and Find Full Text PDF