Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with no effective cure. Astrocytes display a toxic phenotype in ALS and contribute to motoneuron (MN) degeneration. Modulating astrocytes' neurotoxicity can reduce MN death.
View Article and Find Full Text PDFA large and expending body of evidence indicates that the gut-brain axis likely plays a crucial role in neurological diseases, including multiple sclerosis (MS). As a whole, the gut-brain axis can be considered as a bi-directional multi-crosstalk pathway that governs the interaction between the gut microbiota and the organism. Perturbation in the commensal microbial population, referred to as dysbiosis, is frequently associated with an increased intestinal permeability, or "leaky gut", which allows the entrance of exogeneous molecules, in particular bacterial products and metabolites, that can disrupt tissue homeostasis and induce inflammation, promoting both local and systemic immune responses.
View Article and Find Full Text PDFMonomethyl fumarate (MMF), metabolite of dimethyl fumarate (DMF), an immunosuppressive drug approved for the treatment of multiple sclerosis (MS), is a potent agonist for hydroxycarboxylic acid receptor 2 (HCAR2), eliciting signals that dampen cell activation or lead to inflammation such as the skin flushing reaction that is one of the main side effects of the treatment, together with gastrointestinal inflammation. Our aim is to further understand the molecular basis underlying these differential effects of the drug. We have used wild-type and HCAR2 knock-out mice to investigate, and under steady-state and pathological conditions, the HCAR2-mediated signaling pathways activated by MMF in dendritic cells (DC), which promote differentiation of T cells, and in intestinal epithelial cells (IEC) where activation of a pro-inflammatory pathway, such as the cyclooxygenase-2 pathway involved in skin flushing, could underlie gastrointestinal side effects of the drug.
View Article and Find Full Text PDFMesenchymal stromal/stem cells (MSCs) are characterized by neuroprotective, immunomodulatory, and neuroregenerative properties, which support their therapeutic potential for inflammatory/neurodegenerative diseases, including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). One mode of action through which MSCs exert their immunomodulatory effects is release of extracellular vesicles that carry proteins, mRNAs, and microRNAs (miRNAs), which, once transferred, modify the function of target cells. We identified nine miRNAs significantly dysregulated in IFN-γ-primed MSCs, but present at different levels in their derived small extracellular vesicles (s-EV).
View Article and Find Full Text PDFDimethyl fumarate (DMF), recently approved as an oral immunomodulatory treatment for relapsing-remitting multiple sclerosis (MS), metabolizes to monomethyl fumarate (MMF) which crosses the blood-brain barrier and has demonstrated neuroprotective effects in experimental studies. We postulated that MMF exerts neuroprotective effects through modulation of microglia activation, a critical component of the neuroinflammatory cascade that occurs in neurodegenerative diseases such as MS. To ascertain our hypothesis and define the mechanistic pathways involved in the modulating effect of fumarates, we used real-time PCR and biochemical assays to assess changes in the molecular and functional phenotype of microglia, quantitative Western blotting to monitor activation of postulated pathway components, and ex vivo whole-cell patch clamp recording of excitatory post-synaptic currents in corticostriatal slices from mice with experimental autoimmune encephalomyelitis (EAE), a model for MS, to study synaptic transmission.
View Article and Find Full Text PDFMicroglia cells, the resident innate immune cells in the brain, are highly active, extending and retracting highly motile processes through which they continuously survey their microenvironment for 'danger signals' and interact dynamically with surrounding cells. Upon sensing changes in their central nervous system microenvironment, microglia become activated, undergoing morphological and functional changes. Microglia activation is not an 'all-or-none' process, but rather a continuum depending on encountered stimuli, which is expressed through a spectrum of molecular and functional phenotypes ranging from so-called 'classically activated', with a highly pro-inflammatory profile, to 'alternatively activated' associated with a beneficial, less inflammatory, neuroprotective profile.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) display a remarkable ability to modulate the immune response and protect the central nervous system mainly through the release of soluble factors in a paracrine fashion, affecting the functional behavior of cells in the tissues. Here we investigated the effect of the interaction between MSC and microglia in vitro, and we dissected the molecular and cellular mechanisms of this crosstalk. We demonstrated that MSC impair microglia activation by inflammatory cues through the inhibition of the expression and release of inflammatory molecules and stress-associated proteins.
View Article and Find Full Text PDF