It is estimated that 225 million women worldwide have an unmet need for family planning, and more than half live in low- and middle-income countries. Increasing the choice of contraceptive methods available can reduce this unmet need. Microneedle drug delivery systems represent a new technology for minimally invasive self-administration of contraceptives.
View Article and Find Full Text PDFMicroneedle (MN)-based technologies have been proposed as a means to facilitate minimally invasive sustained delivery of long-acting hormonal contraceptives into the skin. Intradermal administration is a new route of delivery for these contraceptives and therefore no established laboratory methods or experimental models are available to predict dermal drug release and pharmacokinetics from candidate MN formulations. This study evaluates an in vitro release (IVR) medium and a medium supplemented with ex vivo human skin homogenate (SH) as potential laboratory models to investigate the dermal release characteristics of one such hormonal contraceptive that is being tested for MN delivery, levonorgestrel (LNG), and provides details of an accompanying novel two-step liquid-liquid drug extraction procedure and sensitive reversed-phase HPLC-UV assay.
View Article and Find Full Text PDFThe fabrication of silicon in-plane microneedle arrays from a simple single wet etch step is presented. The characteristic 54.7° sidewall etch angle obtained via KOH etching of (100) orientation silicon wafers has been used to create a novel microneedle design.
View Article and Find Full Text PDFA novel production process flow is presented here for the manufacture of hollow silicon microneedles using deep reactive-ion etching (DRIE) technology. The patent-pending three-step process flow has been developed to produce multiple arrays of sharp-tipped, hollow microneedles, which facilitate easy insertion and controlled fluid injection into excised skin samples. A bevelled tip and vertical sidewalls for the microneedle have been achieved with good uniformity, despite >45% open etch area.
View Article and Find Full Text PDFIn several skeletal dysplasias defects in extracellular matrix molecules affect not only the structural and mechanical properties of cartilage, but also the complex network of signaling pathways involved in cell proliferation and differentiation. Sulfated proteoglycans, besides playing an important structural role in cartilage, are crucial in modulating the transport, diffusion, and interactions of growth factors with their specific targets, taking part in the regulation of signaling pathways involved in skeletal development and growth. In this work, we investigated by real time PCR and Western blots of the microdissected growth plate and by immunohistochemistry the molecular basis of reduced chondrocyte proliferation in the growth plate of the dtd mouse, a chondrodysplastic model with defective chondroitin sulfate proteoglycan sulfation of articular and growth plate cartilage.
View Article and Find Full Text PDFDisease mechanisms leading to different forms of chondrodysplasia include extracellular matrix (ECM) alterations and intracellular stress resulting in abnormal changes to chondrocyte proliferation and survival. Delineating the relative contribution of these two disease mechanisms is a major challenge in understanding disease pathophysiology in genetic skeletal diseases and a prerequisite for developing effective therapies. To determine the influence of intracellular stress and changes in chondrocyte phenotype to the development of chondrodysplasia, we targeted the expression of the G2320R mutant form of thyroglobulin to the endoplasmic reticulum (ER) of resting and proliferating chondrocytes.
View Article and Find Full Text PDFDiastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans.
View Article and Find Full Text PDFDiastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally.
View Article and Find Full Text PDFPseudoachondroplasia (PSACH) results from mutations in cartilage oligomeric matrix protein (COMP) and the p.D469del mutation within the type III repeats of COMP accounts for approximately 30% of PSACH. To determine disease mechanisms of PSACH in vivo, we introduced the Comp D469del mutation into the mouse genome.
View Article and Find Full Text PDFMutations in the sulfate transporter gene, SCL26A2, lead to cartilage proteoglycan undersulfation resulting in chondrodysplasia in humans; the phenotype is mirrored in the diastrophic dysplasia (dtd) mouse. It remains unclear whether bone shortening and deformities are caused solely by changes in the cartilage matrix, or whether chondroitin sulfate proteoglycan undersulfation affects also signalling pathways involved in cell proliferation and differentiation. Therefore we studied macromolecular sulfation in the different zones of the dtd mouse growth plate and these data were related to growth plate histomorphometry and proliferation analysis.
View Article and Find Full Text PDFDirect 2-DE analysis of cartilage is difficult due to the high proteoglycan content. Proteoglycan removal before IEF may however cause the partial or total loss of specific proteins making this approach ineffective when quantitative data are required to investigate protein expression differences. Thus, we have developed a 2-DE method including passive rehydration loading that does not require sample pretreatment and allows direct protein expression studies in cartilage samples.
View Article and Find Full Text PDFThis study used proteomic and transcriptomic techniques to understand the molecular basis of the phenotypic variability in the bone disorder osteogenesis imperfecta (OI). Calvarial bone mRNA expression was evaluated by microarray, real-time, and comparative RT-PCR and the bone proteome profile was analyzed by 2-DE, MS, and immunoblotting in the OI murine model BrtlIV, which has either a moderate or a lethal OI outcome. Differential expression analysis showed significant changes for eight proteins.
View Article and Find Full Text PDFCytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al.
View Article and Find Full Text PDFMutations in the diastrophic dysplasia sulfate transporter (DTDST or SLC26A2) cause a family of recessively inherited chondrodysplasias including, in order of decreasing severity, achondrogenesis 1B, atelosteogenesis 2, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia. The gene encodes a widely distributed sulfate/chloride antiporter of the cell membrane whose function is crucial for the uptake of inorganic sulfate, which is needed for proteoglycan sulfation. To provide new insights in the pathogenetic mechanisms leading to skeletal and connective tissue dysplasia and to obtain an in vivo model for therapeutic approaches to DTD, we generated a Dtdst knock-in mouse with a partial loss of function of the sulfate transporter.
View Article and Find Full Text PDF