Publications by authors named "Benedetta Franceschiello"

Article Synopsis
  • Geometric optical illusions (GOIs) highlight mismatches between what we see and the actual physical stimuli, allowing researchers to explore how sensation and perception interact.
  • A study conducted with 30 adults revealed that different physical properties of GOIs have varying effects on perceptual biases, and these effects can interact in complex ways.
  • By combining psychophysics with computational modeling of the primary visual cortex, the researchers found that certain adjustments in neural parameters could replicate human perceptual biases, suggesting that different physical attributes work together to create a GOI and offering insights into the mechanisms behind perception.
View Article and Find Full Text PDF

Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients, cf. Candés (C. R.

View Article and Find Full Text PDF

Learning spatial layouts and navigating through them rely not simply on sight but rather on multisensory processes, including touch. Digital haptics based on ultrasounds are effective for creating and manipulating mental images of individual objects in sighted and visually impaired participants. Here, we tested if this extends to scenes and navigation within them.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) is a methodological cornerstone of neuroscience. Most studies measure blood-oxygen-level-dependent (BOLD) signal using echo-planar imaging (EPI), Cartesian sampling, and image reconstruction with a one-to-one correspondence between the number of acquired volumes and reconstructed images. However, EPI schemes are subject to trade-offs between spatial and temporal resolutions.

View Article and Find Full Text PDF

Background And Objective: Eye-movement trajectories are rich behavioral data, providing a window on how the brain processes information. We address the challenge of characterizing signs of visuo-spatial neglect from saccadic eye trajectories recorded in brain-damaged patients with spatial neglect as well as in healthy controls during a visual search task.

Methods: We establish a standardized pre-processing pipeline adaptable to other task-based eye-tracker measurements.

View Article and Find Full Text PDF

Electroencephalography (EEG) is among the most widely diffused, inexpensive, and adopted neuroimaging techniques. Nonetheless, EEG requires measurements against a reference site(s), which is typically chosen by the experimenter, and specific pre-processing steps precede analyses. It is therefore valuable to obtain quantities that are minimally affected by reference and pre-processing choices.

View Article and Find Full Text PDF

Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses in silico and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by "computational model" is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior.

View Article and Find Full Text PDF

Eye motion is a major confound for magnetic resonance imaging (MRI) in neuroscience or ophthalmology. Currently, solutions toward eye stabilisation include participants fixating or administration of paralytics/anaesthetics. We developed a novel MRI protocol for acquiring 3-dimensional images while the eye freely moves.

View Article and Find Full Text PDF

We reproduce suprathreshold perception phenomena, specifically visual illusions, by Wilson-Cowan (WC)-type models of neuronal dynamics. Our findings show that the ability to replicate the illusions considered is related to how well the neural activity equations comply with the efficient representation principle. Our first contribution consists in showing that the WC equations can reproduce a number of brightness and orientation-dependent illusions.

View Article and Find Full Text PDF

Grid cells in the entorhinal cortex, together with head direction, place, speed and border cells, are major contributors to the organization of spatial representations in the brain. In this work we introduce a novel theoretical and algorithmic framework able to explain the optimality of hexagonal grid-like response patterns. We show that this pattern is a result of minimal variance encoding of neurons together with maximal robustness to neurons' noise and minimal number of encoding neurons.

View Article and Find Full Text PDF

Electroencephalography (EEG) is the non-invasive measurement of the brain's electric fields. Electrodes placed on the scalp record voltage potentials resulting from current flow in and around neurons. EEG is nearly a century old: this long history has afforded EEG a rich and diverse spectrum of applications.

View Article and Find Full Text PDF