This paper reports atomic force microscopy results and molecular dynamics simulations of the striking differences of long-term self-organization structures of negatively charged (AcA)KD (double tail) and AcAD (single tail) peptides, respectively, forming micrometer-long, linearly ordered ribbon-like structures and nanometer-sized, unstructured, round-shaped aggregates. The subsequent formation steps of the long-range nanoribbons, experimentally observed only for the "double tail" (AcA)KD peptide, are analyzed in detail, showing that the initial "primary" unstructured round-shaped aggregates progressively evolve into longer nanofilaments and into micrometer-long, network-forming nanoribbon moieties. In particular, the long-range self-organization of the "double tail" peptides appears to be closely related to electrostatically driven diffusional motions of the primary aggregates and nanofilaments.
View Article and Find Full Text PDFMicrogel particles have emerged in the past few years as a favorite model system for fundamental science and for innovative applications ranging from the industrial to biomedical fields. Despite their potentialities, no works so far have focused on the application of microgels for cultural heritage preservation. Here we show their first use for this purpose, focusing on wet paper cleaning.
View Article and Find Full Text PDFHydrogel-based cleaning of paper artworks is an increasingly widespread process in the cultural heritage field. However, the search for tuned (compatible, highly retentive and not perishable) hydrogels is a challenging open question. In this paper, a complete characterization of chemical hydrogels based on polyvinyl alcohol (PVA) crosslinked with telechelic PVA and their remarkable performances as gels for cleaning paper artworks are reported.
View Article and Find Full Text PDFThe influence of conformational dynamics on the self-assembly process of a conformationally constrained analogue of the natural antimicrobial peptide Trichogin GA IV was analysed by spectroscopic methods, microscopy imaging at nanometre resolution, and molecular dynamics simulations. The formation of peptide films at the air/water interface and their deposition on a graphite or a mica substrate were investigated. A combination of experimental evidence with molecular dynamics simulation was used to demonstrate that only the fully developed helical structure of the analogue promotes formation of ordered aggregates that nucleate the growth of micrometric rods, which give rise to homogenous coating over wide regions of the hydrophilic mica.
View Article and Find Full Text PDFNanostructures can strongly interact with cells or other biological structures; furthermore when they are functionalized with targeting units, they are of great interest for a variety of applications in the biotechnology field like those for efficient imaging, diagnosis and therapy and in particular for cancer theranostics. Obtaining targeting with good specificity and sensitivity is a key necessity, which, however, is affected by the complexity of the interactions between the nanostructures and the biological components. In this work we report the study of specificity and sensitivity of gold nanoparticles functionalized with the peptide GE11 for the targeting of the epidermal growth factor receptor, expressed on many cells and, in particular, on many types of cancer cells.
View Article and Find Full Text PDFThe cyclic change of structure, thickness, and density, with pH switching from acidic (pH = 3) to basic (pH = 11) condition, has been revealed for chemisorbed monolayers of the peptide Lipo-Aib-Lys-Leu-Aib-Lys-Lys-Leu-Aib-Lys-Ile-Lol, a trichogin GA IV-analogue carrying Lys residues instead of Gly ones at positions 2, 5, 6, and 9, while a homologous peptide not containing Lys residues does not show any response to pH changes. Experimental and theoretical results, obtained by means of quartz crystal microbalance with dissipation monitoring, surface plasmon resonance, nanoplasmonic sensing technique, Fourier transform infrared-reflection attenuated spectroscopy and dynamic force spectroscopy, and molecular dynamics simulations provide detailed information on the overall monolayer structure changes with pH, including the analysis of the intra- and interchain peptide dynamics, the structure of the peptide layer/water/solid interface, as well as the position and role of solvation and nonsolvation water. The observed stimuli-responsive behavior of L1 peptide monolayers is accounted in terms of the occurrence of a pH-induced wetting/dewetting process, due to the pH-induced switching of the hydrophilic character of charged lysine groups to hydrophobic one of the same uncharged groups, along the peptide chain.
View Article and Find Full Text PDFPeptide self-assembly is ubiquitous in nature. It governs the organization of proteins, controlling their folding kinetics and preserving their structural stability and bioactivity. In this connection, model oligopeptides may give important insights into the molecular mechanisms and elementary forces driving the formation of supramolecular structures.
View Article and Find Full Text PDF