Publications by authors named "Benedetta Cornelio"

Gold nanoparticles (AuNPs) are currently intensively exploited in the biomedical field as they possess interesting chemical and optical properties. Although their synthesis is well-known, their controlled surface modification with defined densities of ligands such as peptides, DNA, or antibodies remains challenging and has generally to be optimized case by case. This is particularly true for applications like in vivo drug delivery that require AuNPs with multiple ligands, for example a targeting ligand and a drug in well-defined proportions.

View Article and Find Full Text PDF

The grafting of 5-iodoisatin heterocycle on a cyclic olefin copolymer (COC) and a gold surface was performed using a heterogeneous phase Sonogashira reaction consisting of coupling 5-iodoisatin with an arylalkyne previously introduced onto the surfaces. This optimized strategy takes advantage of the well-established methodology to functionalize COC or gold surfaces using aryldiazonium surface chemistry. Herein, we reported the first example of an isatin decorated polymeric or metallic surface.

View Article and Find Full Text PDF

Sixteen 5-aryl-substituted isothiazol-3(2H)-one-1,(1)-(di)oxide analogs have been prepared from the corresponding 5-chloroisothiazol-3(2H)-one-1-oxide or -1,1-dioxide by a Suzuki-Miyaura cross-coupling reaction and screened for their inhibition potency against four human carbonic anhydrase isoenzymes: the transmembrane tumor-associated hCA IX and XII and the cytosolic off-target hCA I and II. Most of the synthesized derivatives inhibited hCA IX and XII isoforms in nanomolar range, whereas remained inactive or modestly active against both hCA I and II isoenzymes. In the N-tert-butylisothiazolone series, the 5-phenyl-substituted analog (1a) excelled in the inhibition of tumor-associated hCA IX and XII (K = 4.

View Article and Find Full Text PDF

Liposomes loaded with drug–cyclodextrin complexes are widely used as drug delivery systems, especially for species with low aqueous solubility and stability. Investigation of the intimate interactions of macrocycles with liposomes are essential for formulation of efficient and stable drug-in-cyclodextrin-in-liposome carriers. In this work, we reported the preparation of unilamellar vesicles of 1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC) embedded with native β-cyclodextrin and two synthetic derivatives: heptakis(2,3,6-tri--methyl)-β-cyclodextrin (TMCD) and heptakis(2,3-di--acetyl)-β-cyclodextrin (DACD).

View Article and Find Full Text PDF

New derivatives of cyclodextrins were prepared in order to determine the relative importance of the structural key elements involved in the degradation of organophosphorus nerve agents. To avoid a competitive inclusion between the organophosphorus substrate and the iodosobenzoate group, responsible for its degradation, the latter group had to be covalently bound to the cyclodextrin scaffold. Although the presence of the α nucleophile iodosobenzoate was a determinant in the hydrolysis process, an imidazole group was added to get a synergistic effect towards the degradation of the agents.

View Article and Find Full Text PDF
Article Synopsis
  • * Four new benzenesulfonamide-based inhibitors were created, showing strong binding (nanomolar affinities) to different CA isoforms, with structural studies revealing how these inhibitors interact with CA IX and CA II.
  • * Research identified key residues in the active site that influence binding and specificity, demonstrating that understanding these interactions can help design more targeted CA inhibitors that avoid unwanted side effects.
View Article and Find Full Text PDF

Benzenesulfonamides bearing various substituted (hetero)aryl rings in the para-position were prepared by palladium nanoparticle-catalyzed Suzuki-Miyaura cross-coupling reactions and evaluated as human carbonic anhydrase (hCA, EC 4.2.1.

View Article and Find Full Text PDF