Publications by authors named "Benedeta Hasaj"

The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts.

View Article and Find Full Text PDF

Gene expression is tightly regulated at the levels of both mRNA translation and stability. The poly(A)-binding protein (PABP) is thought to play a role in regulating these processes by binding the mRNA 3' poly(A) tail and interacting with both the translation and mRNA deadenylation machineries. In this study, we directly investigate the impact of PABP on translation and stability of endogenous mRNAs in human cells.

View Article and Find Full Text PDF

Cell-mediated immunity is an important component of immediate and long-term anti-viral protection. Dendritic cells (DCs) are essential for the induction of cell-mediated immunity by instructing the activation and differentiation of antigen-specific T cell responses. Activated DCs that express co-stimulatory molecules and pro-inflammatory cytokines are necessary to promote the development of type 1 immune responses required for viral control.

View Article and Find Full Text PDF

PD-L1 (programmed death ligand 1) and PD-L2 are cell-surface glycoproteins that interact with programmed death 1 (PD-1) on T cells to attenuate inflammation. PD-1 signaling has attracted intense interest for its role in a pathophysiological context: suppression of anti-tumor immunity. Similarly, vitamin D signaling has been increasingly investigated for its non-classical actions in stimulation of innate immunity and suppression of inflammatory responses.

View Article and Find Full Text PDF

Chromosome congression requires the stable attachment of microtubules to chromosomes mediated by the kinetochore, a large proteinaceous structure whose mechanism of assembly is unknown. In this paper, we present the finding that a protein called TRAMM (formerly known as TrappC12) plays a role in mitosis. Depletion of TRAMM resulted in noncongressed chromosomes and arrested cells in mitosis.

View Article and Find Full Text PDF

Saccharomyces cerevisiae transport protein particle (TRAPP) is a family of related multisubunit complexes required for endoplasmic reticulum-to-Golgi transport (TRAPP I), endosome-to-Golgi transport (TRAPP II) or cytosol to vacuole targeting (TRAPP III). To gain insight into the relationship between these complexes, we generated random and targeted mutations in the Trs23p core subunit. Remarkably, at physiological salt concentrations only two peaks (TRAPP I and a high molecular weight peak) are detected in wild-type cells.

View Article and Find Full Text PDF