Recent advances in bioanalytical and imaging technologies have revolutionized our ability to assess complex biological and pathological changes within tissue samples. Spatial omics, a rapidly evolving technology, enables the simultaneous detection of multiple biomolecules in tissue sections, allowing for high-dimensional molecular profiling within tissue microanatomical contexts. This offers a powerful opportunity for precise, multidimensional exploration of complex disease pathophysiology.
View Article and Find Full Text PDFThe consensus molecular subtypes (CMS) of colorectal cancer (CRC) is the most widely-used gene expression-based classification and has contributed to a better understanding of disease heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity restricts its clinical application, stressing the necessity of further characterizing the composition and architecture of CRC. Here, we used Spatial Transcriptomics (ST) in combination with single-cell RNA sequencing (scRNA-seq) to decipher the spatially resolved cellular and molecular composition of CRC.
View Article and Find Full Text PDF