Stimulus-specific adaptation is a hallmark of sensory processing in which a repeated stimulus results in diminished successive neuronal responses, but a deviant stimulus will still elicit robust responses from the same neurons. Recent work has established that synaptically released zinc is an endogenous mechanism that shapes neuronal responses to sounds in the auditory cortex. Here, to understand the contributions of synaptic zinc to deviance detection of specific neurons, we performed wide-field and 2-photon calcium imaging of multiple classes of cortical neurons.
View Article and Find Full Text PDFMicrotubules are essential for various cellular processes. The functional diversity of microtubules is attributed to the incorporation of various α- and β-tubulin isotypes encoded by different genes. In this work, we investigated the functional role of β4B-tubulin isotype (TUBB4B) in hearing and vision as mutations in TUBB4B are associated with sensorineural disease.
View Article and Find Full Text PDFShank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function.
View Article and Find Full Text PDFN-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization.
View Article and Find Full Text PDFThe biological phenomenon of protein-lipid interactions in cell membranes underlies the diversity of peripheral membrane protein function and physical properties of the membrane. To summarize novel findings in the field, this research highlight focuses on recent publications in Biophysical Journal.
View Article and Find Full Text PDFSynaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner.
View Article and Find Full Text PDFThe field-induced ordering of concentrated ferrofluids based on spherical and cuboidal maghemite nanoparticles is studied using small-angle neutron scattering, revealing a qualitative effect of the faceted shape on the interparticle interactions as shown in the structure factor and correlation lengths. Whereas a spatially disordered hard-sphere interaction potential with a short correlation length is found for ∼9 nm spherical nanoparticles, nanocubes of a comparable particle size exhibit a more pronounced interparticle interaction and the formation of linear arrangements. Analysis of the anisotropic two-dimensional pair distance correlation function gives insight into the real-space arrangement of the nanoparticles.
View Article and Find Full Text PDFChallenges in life skills in individuals with autism spectrum disorders (ASD) are associated with dependency on others and increased isolation from peers. In recent years, interventions using virtual reality (VR) technology have been proposed to improve life skills in ASD populations. This systematic review seeks to evaluate the efficacy of employing VR interventions mediated via head-mounted displays (HMD) for the improvement of life skills in individuals with ASD.
View Article and Find Full Text PDFMagnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution.
View Article and Find Full Text PDFShell ferromagnetism is a new functional property of certain off-stoichiometric Ni-Mn-In Heusler alloys, with a potential application in non-volatile magnetic memories and recording media. One key challenge in this field remains the determination of the structural and magnetic properties of the nanoprecipitates that are the result of an annealing-induced segregation process. Thanks to its unique mesoscopic length scale sensitivity, magnetic small-angle neutron scattering appears to be a powerful technique to disclose the microstructure of such annealing-induced nanoprecipitates.
View Article and Find Full Text PDFThe small-angle neutron scattering data of nanostructured magnetic samples contain information regarding their chemical and magnetic properties. Often, the first step to access characteristic magnetic and structural length scales is a model-free investigation. However, due to measurement uncertainties and a restricted range, a direct Fourier transform usually fails and results in ambiguous distributions.
View Article and Find Full Text PDFRobin sequence (RS), the triad of micrognathia, glossoptosis, and airway obstruction, is a major cause of respiratory distress and feeding difficulties in neonates. Robin sequence can be associated with other medical or developmental comorbidities in ~50% of cases ("syndromic" RS). As well, RS is variably associated with cleft palate (CP).
View Article and Find Full Text PDFThis study reports a strong ME effect in thin-film composites consisting of nickel, iron, or cobalt foils and 550 nm thick AlN films grown by PE-ALD at a (low) temperature of 250 °C and ensuring isotropic and highly conformal coating profiles. The AlN film quality and the interface between the film and the foils are meticulously investigated by means of high-resolution transmission electron microscopy and the adhesion test. An interface (transition) layer of partially amorphous AlO/AlON with thicknesses of 10 and 20 nm, corresponding to the films grown on Ni, Fe, and Co foils, is revealed.
View Article and Find Full Text PDFThe present investigation examined the ability of two threshold detection analyses (maximum distance, Dmax; modified maximum distance, mDmax) in identifying the near-infrared spectroscopy (NIRS) threshold, a lactate threshold (LT) estimate, from exercising tissue oxygen saturation (StO) responses. Additionally, the test-retest reliability of exercising StO and total hemoglobin concentration (THC) responses were examined at moderate and peak cycling intensities. Fourteen healthy, recreationally active participants performed maximal incremental step cycling tests (+25 W / 3 minutes) to volitional fatigue on two separate occasions while StO and THC of the vastus lateralis were monitored.
View Article and Find Full Text PDFIron oxide nanoparticles have tremendous scientific and technological potential in a broad range of technologies, from energy applications to biomedicine. To improve their performance, single-crystalline and defect-free nanoparticles have thus far been aspired. However, in several recent studies, defect-rich nanoparticles outperform their defect-free counterparts in magnetic hyperthermia and magnetic particle imaging (MPI).
View Article and Find Full Text PDFScientific interest in iron-oxides and in particular magnetite has been renewed due to the broad scope of their fascinating properties, which are finding applications in electronics and biomedicine. Specifically, iron oxide nanoparticles (IONPs) are gathering attraction in biomedicine. Their cores are usually constituted by a mixture of maghemite and magnetite phases.
View Article and Find Full Text PDFPhys Rev Lett
January 2021
Proton capture on the excited isomeric state of ^{26}Al strongly influences the abundance of ^{26}Mg ejected in explosive astronomical events and, as such, plays a critical role in determining the initial content of radiogenic ^{26}Al in presolar grains. This reaction also affects the temperature range for thermal equilibrium between the ground and isomeric levels. We present a novel technique, which exploits the isospin symmetry of the nuclear force, to address the long-standing challenge of determining proton-capture rates on excited nuclear levels.
View Article and Find Full Text PDFMagnetic nanoparticles are an important asset in many biomedical applications ranging from the local heating of tumours to targeted drug delivery towards diseased sites. Recently, magnetic nanoflowers showed a remarkable heating performance in hyperthermia experiments thanks to their complex structure leading to a broad range of magnetic dynamics. To grasp their full potential and to better understand the origin of this unexpected heating performance, we propose the use of Kaczmarz' algorithm in interpreting magnetic characterisation measurements.
View Article and Find Full Text PDFThe attractive electronic and magnetic properties together with their biocompatibility make iron-oxide nanoparticles appear as functional materials. In Fe-oxide nanoparticle (IONP) ensembles, it is crucial to enhance their performance thanks to controlled size, shape, and stoichiometry ensembles. In light of this, we conduct a comprehensive investigation in an ensemble of 28 nm cuboid-shaped IONPs in which all the analyses concur with the coexistence of magnetite/maghemite phases in their cores.
View Article and Find Full Text PDFMandibulofacial dysostosis with microcephaly (MFDM) is due to haploinsufficiency of spliceosomal GTPase EFTUD2. Features include microcephaly, craniofacial dysmorphology, developmental disability, and other anomalies. We surveyed parents of individuals with MFDM to expand knowledge about health, development, and parental concerns.
View Article and Find Full Text PDFObjective: To investigate whether Kinesio taping technique, applied to ankles of healthy people as a preventive intervention and people with ankle injuries, is superior to sham or alternative interventions on ankle function.
Data Sources: Medline, Embase, Amed, CINAHL, SPORTDiscus, Cochrane Library and Web of Science, from inception to August 2020.
Review Methods: The terms "ankle" and "kinesio taping" were used in the search strategy.
In the quest to image the three-dimensional magnetization structure we show that the technique of magnetic small-angle neutron scattering (SANS) is highly sensitive to the details of the internal spin structure of nanoparticles. By combining SANS with numerical micromagnetic computations we study the transition from single-domain to multidomain behavior in nanoparticles and its implications for the ensuing magnetic SANS cross section. Above the critical single-domain size we find that the cross section and the related correlation function cannot be described anymore with the uniform particle model, resulting, e.
View Article and Find Full Text PDFThe low-spin structure of the semimagic ^{64}Ni nucleus has been considerably expanded: combining four experiments, several 0^{+} and 2^{+} excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0^{+} excitation is located at a surprisingly high energy (3463 keV), with a collective 2^{+} state 286 keV above it, the first such observation in Ni isotopes.
View Article and Find Full Text PDF