Publications by authors named "Bencini A"

Correction for 'Selective binding and fluorescence sensing of Zn(II)/Cd(II) using macrocyclic tetra-amines with different fluorophores: insights into the design of selective chemosensors for transition metals' by Giammarco Maria Romano , , 2025, https://doi.org/10.1039/d4dt02415j.

View Article and Find Full Text PDF
Article Synopsis
  • Selective binding and optical sensing of Zn(II) and Cd(II) in water were studied using different receptors (L1, HL2, L3, HL4, HL5) to see how complex stability affects metal signaling.
  • The receptors all have a cyclic tetra-amine structure combined with either one or two quinoline or 8-hydroxyquinoline units, influencing their properties and interactions.
  • The study showed that Zn(II) forms more stable complexes with some receptors, while Cd(II) complexes benefit from better fitting in specific cavities, leading to unique optical behaviors for each metal in their respective complexes.
View Article and Find Full Text PDF

Fluoride in drinking water has beneficial or harmful health effects depending on its concentration. This highlights the need for new low-cost and portable sensors capable of in situ monitoring of F ions. Unfortunately, achieving high levels of water compatibility and fluoride specificity remains a challenge.

View Article and Find Full Text PDF

The globally widespread perfluorooctanoic acid (PFOA) is a concerning environmental contaminant, with a possible toxic long-term effects on the environment and human health The development of sensible, rapid, and low-cost detection systems is a current change in modern environmental chemistry. In this context, two triamine-based chemosensors, and , containing a fluorescent pyrene unit, and their Zn(II) complexes are proposed as fluorescent probes for the detection of PFOA in aqueous media. Binding studies carried out by means of fluorescence and NMR titrations highlight that protonated forms of the receptors can interact with the carboxylate group of PFOA, thanks to salt bridge formation with the ammonium groups of the aliphatic chain.

View Article and Find Full Text PDF

Desferoxamine (DFO) is currently the golden standard chelator for Zr, a promising nuclide for positron emission tomography imaging (PET). The natural siderophore DFO had previously been conjugated with fluorophores to obtain Fe(III) sensing molecules. In this study, a fluorescent coumarin derivative of DFO (DFOC) has been prepared and characterized (potentiometry, UV-Vis spectroscopy) for what concerns its protonation and metal coordination properties towards PET-relevant ions (Cu(II), Zr(IV)), evidencing strong similarity with pristine DFO.

View Article and Find Full Text PDF

Receptor L, composed of a tripropylenetetramine chain linking the 2 and 7 positions of an acridine unit methylene bridges, behaves as a pentaprotic base in aqueous solution. The first four protonation steps occur on the tetra-amine chain, while the acridine nitrogen protonates only below pH 4. The penta-protonated receptor assumes a folded conformation, resulting in a cleft delimited by the aliphatic tetramine and acridine moieties, in which anions of appropriate size can be hosted.

View Article and Find Full Text PDF

Triamine receptors containing anthracene units are able to bind and sense ketoprofen fluorescence enhancement in a HO/EtOH 50 : 50 (Vol : Vol) mixture exploiting their protonation features, which are tuned by the interaction with the analyte.

View Article and Find Full Text PDF

Herein we describe the binding abilities of Zn(II) complexes of [12]aneN- (L1) and [9]aneN-based receptors (L2, L3) towards the herbicides -(phosphonomethyl)glycine (glyphosate, HPMG) and 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid (glufosinate, HGLU), and also aminomethylphosphonic acid (HAMPA), the main metabolite of HPMG, and phosphate. All ligands form stable Zn(II) complexes, whose coordination geometries allow a possible interaction of the metal center with exogenous anionic substrates. Potentiometric studies evidenced the marked coordination ability of the L2/Zn(II) system for the analytes considered, with a preferential binding affinity for HPMG over the other substrates, in a wide range of pH values.

View Article and Find Full Text PDF

The synthesis of a new Ru complex, in which the metal is coordinated by two 1,10-phenanthroline ligands and a 2,2'-bipyridyl unit linked, via methylene bridges in its 4 and 4' positions, to two 1,4,7,10-tetraazacyclododecane (cyclen) macrocycles ([Ru(phen) ]) is reported. Protonation and Zn binding by [Ru(phen) ] have been analyzed by potentiometric titration, evidencing the formation of mixed hetero-binuclear and hetero-trinuclear Zn/Ru complexes. These complexes were tested as bis-phenol A (BPA) binders.

View Article and Find Full Text PDF

The selection of molecular spin qubits with a long coherence time, , is a central task for implementing molecule-based quantum technologies. Even if a sufficiently long can be achieved through an efficient synthetic strategy and experimental measurement procedures, many factors contributing to the loss of coherence still need to be thoroughly investigated and understood. Vibrational properties and nuclear spins of hydrogens are two of them.

View Article and Find Full Text PDF

The synthesis and coordination properties of two fluorescent chemosensors, featuring [9]aneN (1,4,7-triazacyclononane; L1) and [12]aneNS (1-aza-4,7,10-trithiacyclododecane; L2) as receptor units, and a quinoline pendant arm with an amide group as a functional group spacer are described. The optical responses of L1 and L2 in the presence of several metal ions were analysed in MeCN/H O (1 : 4 v/v) solutions. A selective chelation enhancement of fluorescence (CHEF) effect was observed in the presence of Zn in the case of L1, and in the presence of Cd in the case of L2, following the formation of a 1 : 1 and a 1 : 2 metal/ligand complex, respectively, which was also confirmed by potentiometric measurements.

View Article and Find Full Text PDF

The synthesis and characterization of the two new open-chain ligands 1,15-bis-[6-(2,2'-bipyridyl)]-2,5,8,11,14-pentaaza-octadecane (L1) and 1,15-bis-[2-(1,10-phenanthroline)-9-methyl]-2,5,8,11,14-pentaazaoctadecane (L2), both featuring a tetraethylenpentaamine chain linking via methylene bridges the 6 and 2 positions of two identical 2,2'-bipyridyl (bpy) and 9-methyl-1,10-phenanthroline (9-methyl-phen) moieties respectively, are reported. Their protonation and binding ability for Cu , Zn , Cd and Pb have been studied by coupling potentiometric titrations with UV-vis absorption and fluorescence emission measurements in water. L1 and L2 afford stable mono- and dinuclear complexes, in which the metal ion is bound by a single bpy or 9-methyl-phen unit and the amine groups on the aliphatic chain.

View Article and Find Full Text PDF

Oxidative stress due to excess superoxide anion ([Formula: see text]) produced by dysfunctional mitochondria is a key pathogenic event of aging and ischemia-reperfusion diseases. Here, a new [Formula: see text]-scavenging Mn complex with a new polyamino-polycarboxylate macrocycle (4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetate) containing 2 quinoline units (MnQ2), designed to improve complex stability and cell permeability, was compared to parental Mn complex with methyls replacing quinolines (MnM2). MnQ2 was more stable than MnM2 (log K = 19.

View Article and Find Full Text PDF

A comparative study between two novel, highly water soluble, ruthenium(II) polypyridyl complexes, [Ru(phen) L'] and [Ru(phen) Cu(II)L'] (L and L-Cu ), containing the polyaazamacrocyclic unit 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridilophane (L'), is herein reported. L and L-Cu interact with calf-thymus DNA and efficiently cleave DNA plasmid when light-activated. They also possess great penetration abilities and photo-induced biological activities, evaluated on an A375 human melanoma cell line, with L-Cu being the most effective.

View Article and Find Full Text PDF

We describe here the synthesis and coordination properties of three new derivatives of [9]aneN3 containing phenyl/quinoline pendant arm derivatives (L1, L2 and L3, respectively) also featuring urea (L1-L2) or amide (L3) functions as "non-innocent" spacers. At first, L1, L2 and L3 were studied considering the interaction with a series of anions (AcO-, BzO-, H2PO4-, F-, and Cl-) by means of 1H NMR measurements. Subsequently, the optical responses of L2 and L3 in the presence of several metal ions Cd2+, Co2+, Cu2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Zn2+ and Pb2 were analysed in MeCN/H2O (4 : 1 v/v).

View Article and Find Full Text PDF

Metoprolol {systematic name: (RS)-1-isopropylamino-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol}, CHNO, is a cardioselective β-adrenergic blocking agent that shares part of its molecular skeleton with a large number of other β-blockers. Results from its solid-state characterization by single-crystal and variable-temperature powder X-ray diffraction and differential scanning calorimetry are presented. Its molecular and crystal arrangements have been further investigated by molecular modelling, by a Cambridge Structural Database (CSD) survey and by Hirshfeld surface analysis.

View Article and Find Full Text PDF

Here we report a family of bis-amide receptors for anion binding that contain carboxylic acid groups vicinal to the amide function. Deprotonation of the carboxylic acids decreases the acidity of amide NHs, switching on the anion binding ability of the deprotonated receptors with selectivity for fluoride complexation. The proposed systems represent a unique example of anionic receptors able to bind anions via H-bonding.

View Article and Find Full Text PDF

The silver(I) N-heterocyclic carbene (NHC) complex bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride ([Ag(EIA) ]Cl), bearing two anthracenyl fluorescent probes, has been synthesized and characterized. [Ag(EIA) ]Cl is stable in organic solvents and under physiological conditions, and shows potent cytotoxic effects in vitro toward human SH-SY5Y neuroblastoma cells. The interactions of [Ag(EIA) ]Cl with a few model biological targets have been studied as well as its ability to be internalized in cells.

View Article and Find Full Text PDF

Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability.

View Article and Find Full Text PDF

Progress in nanotechnology has determined new strategies concerning drug delivery into the central nervous system for the treatment of degenerative and inflammatory diseases. To date, brain targeting through systemic drug administration, even in a nano-composition, is often unsuccessful. Therefore, we investigated the possibility of loading T lymphocytes with PGLA-PEG COOH magnetite nanoparticles (30 nm), which can be built up to easily bind drugs and monoclonal antibodies, and to exploit the ability of activated T cells to cross the blood-brain barrier and infiltrate the brain parenchyma.

View Article and Find Full Text PDF

Methylene blue (MB) can be employed as a photo-activatable antimicrobial drug in photodynamic therapy (PDT) due to its ability to release oxygen free radicals upon photo-activation. However, its poor ability to penetrate bacterial cell walls and bacterial biofilms limits its antimicrobial activity. To overcome these limitations, we propose some formulations of MB based on different cationic liposomes.

View Article and Find Full Text PDF

The synthesis of a new ligand (L1) containing two 1,4,7-triazacyclononane ([9]aneN ) moieties linked by a 4,5-dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu , Zn , Cd , and Pb of L1 and receptor L2, composed of two [9]aneN macrocycles bridged by a 6,6''-dimethylen-2,2':6',2''-terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn thanks to fluorescence emission enhancement upon metal binding.

View Article and Find Full Text PDF

A giant-size polyamine macrocycle L, composed of four 1,4,8,11-tetraazacyclotetradecane (cyclam) units linked by 1,3-dimethylenbenzyl spacers, strongly interacts in aqueous solution with four pH indicators (bromocresol purple (H2BCP), phenol red (H2PR), phenolphthalein (H2PP) and fluorescein (H2F)) in their anionic forms. Besides 1 : 1 complexes, L also forms assemblies with an unusual 1 : 2 receptor to dye stoichiometry, thanks to its large dimensions, which allow for the simultaneous interaction of the receptor protonated forms with two anionic dyes. The formation of the assemblies markedly affects the pKa values of the phenol groups of the dyes, which change colour upon complexation in well-defined pH ranges.

View Article and Find Full Text PDF

This critical review focuses on recent advances (2010-2015) in the detection of cyanide anion via metal-based optical chemosensors in which a change in colour and/or fluorescence intensity (or emission wavelength) of a molecular metal complex is determined by the direct interaction of the metal centre with this anion.

View Article and Find Full Text PDF

Background: One of the most discomfortable dose-limiting adverse reactions of effective drugs for the treatment of solid tumors is a peripheral neuropathy which is the main reason for dose reduction and discontinuation of the therapy. We identified oxidative stress as one target of oxaliplatin toxicity in the search of possible adjuvant therapies to prevent neuropathy and alleviate pain. Therefore, we studied an effective SOD mimetic compound, MnL4, as a possible adjuvant treatment in in vitro cellular cultures and in vivo on a rat model of oxaliplatin-induced neuropathy.

View Article and Find Full Text PDF