Publications by authors named "Bence P Olveczky"

The role of the motor cortex in executing motor sequences is widely debated, with studies supporting disparate views. Here we probe the degree to which the motor cortex's engagement depends on task demands, specifically whether its role differs for highly practiced, or 'automatic', sequences versus flexible sequences informed by external cues. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues.

View Article and Find Full Text PDF
Article Synopsis
  • Social interaction is crucial for understanding animal behavior and is particularly relevant in studying neuropsychiatric disorders like autism, but current methods lack detailed quantitative analysis.
  • A new technique has been developed for high-resolution 3D tracking of animal postures and social interactions, utilizing sophisticated technologies like graph neural networks to address complex tracking issues.
  • This research gathered extensive data from 140 million 3D postures in rodents, revealing detailed behavioral patterns and differences in autism models, ultimately providing deeper insights into social behaviors and their biological foundations.
View Article and Find Full Text PDF

Animals have exquisite control of their bodies, allowing them to perform a diverse range of behaviours. How such control is implemented by the brain, however, remains unclear. Advancing our understanding requires models that can relate principles of control to the structure of neural activity in behaving animals.

View Article and Find Full Text PDF

How motor cortex contributes to motor sequence execution is much debated, with studies supporting disparate views. Here we probe the degree to which motor cortex's engagement depends on task demands, specifically whether its role differs for highly practiced, or 'automatic', sequences versus flexible sequences informed by external events. To test this, we trained rats to generate three-element motor sequences either by overtraining them on a single sequence or by having them follow instructive visual cues.

View Article and Find Full Text PDF

The ability to sequence movements in response to new task demands enables rich and adaptive behavior. However, such flexibility is computationally costly and can result in halting performances. Practicing the same motor sequence repeatedly can render its execution precise, fast and effortless, that is, 'automatic'.

View Article and Find Full Text PDF

How an established behavior is retained and consistently produced by a nervous system in constant flux remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time provided that the population dynamics are constrained to produce the same behavior.

View Article and Find Full Text PDF

As the old adage goes: practice makes perfect. Yet, the neural mechanisms by which rote repetition transforms a halting behavior into a fluid, effortless, and "automatic" action are not well understood. Here we consider the possibility that well-practiced motor sequences, which initially rely on higher-level decision-making circuits, become wholly specified in lower-level control circuits.

View Article and Find Full Text PDF

The acquisition and execution of motor skills are mediated by a distributed motor network, spanning cortical and subcortical brain areas. The sensorimotor striatum is an important cog in this network, yet the roles of its two main inputs, from motor cortex and thalamus, remain largely unknown. To address this, we silenced the inputs in rats trained on a task that results in highly stereotyped and idiosyncratic movement patterns.

View Article and Find Full Text PDF

The basal ganglia are known to influence action selection and modulation of movement vigor, but whether and how they contribute to specifying the kinematics of learned motor skills is not understood. Here, we probe this question by recording and manipulating basal ganglia activity in rats trained to generate complex task-specific movement patterns with rich kinematic structure. We find that the sensorimotor arm of the basal ganglia circuit is crucial for generating the detailed movement patterns underlying the acquired motor skills.

View Article and Find Full Text PDF

Comprehensive descriptions of animal behavior require precise three-dimensional (3D) measurements of whole-body movements. Although two-dimensional approaches can track visible landmarks in restrictive environments, performance drops in freely moving animals, due to occlusions and appearance changes. Therefore, we designed DANNCE to robustly track anatomical landmarks in 3D across species and behaviors.

View Article and Find Full Text PDF

In mammalian animal models, high-resolution kinematic tracking is restricted to brief sessions in constrained environments, limiting our ability to probe naturalistic behaviors and their neural underpinnings. To address this, we developed CAPTURE (Continuous Appendicular and Postural Tracking Using Retroreflector Embedding), a behavioral monitoring system that combines motion capture and deep learning to continuously track the 3D kinematics of a rat's head, trunk, and limbs for week-long timescales in freely behaving animals. CAPTURE realizes 10- to 100-fold gains in precision and robustness compared with existing convolutional network approaches to behavioral tracking.

View Article and Find Full Text PDF

In this primer, Ölveczky and Gershman review concepts and advances in deep reinforcement learning and discuss how these can inform the implementation of learning processes in biological neural networks.

View Article and Find Full Text PDF

Though the temporal precision of neural computation has been studied intensively, a data-driven determination of this precision remains a fundamental challenge. Reproducible spike patterns may be obscured on single trials by uncontrolled temporal variability in behavior and cognition and may not be time locked to measurable signatures in behavior or local field potentials (LFP). To overcome these challenges, we describe a general-purpose time warping framework that reveals precise spike-time patterns in an unsupervised manner, even when these patterns are decoupled from behavior or are temporally stretched across single trials.

View Article and Find Full Text PDF

Trial-to-trial movement variability can both drive motor learning and interfere with expert performance, suggesting benefits of regulating it in context-specific ways. Here we address whether and how the brain regulates motor variability as a function of performance by training rats to execute ballistic forelimb movements for reward. Behavioral datasets comprising millions of trials revealed that motor variability is regulated by two distinct processes.

View Article and Find Full Text PDF

Temporally precise movement patterns underlie many motor skills and innate actions, yet the flexibility with which the timing of such stereotyped behaviors can be modified is poorly understood. To probe this, we induce adaptive changes to the temporal structure of birdsong. We find that the duration of specific song segments can be modified without affecting the timing in other parts of the song.

View Article and Find Full Text PDF

The development of increasingly sophisticated methods for recording and manipulating neural activity is revolutionizing neuroscience. By probing how activity patterns in different types of neurons and circuits contribute to behavior, these tools can help inform mechanistic models of brain function and explain the roles of distinct circuit elements. However, in systems where functions are distributed over large networks, interpreting causality experiments can be challenging.

View Article and Find Full Text PDF

Addressing how neural circuits underlie behavior is routinely done by measuring electrical activity from single neurons in experimental sessions. While such recordings yield snapshots of neural dynamics during specified tasks, they are ill-suited for tracking single-unit activity over longer timescales relevant for most developmental and learning processes, or for capturing neural dynamics across different behavioral states. Here we describe an automated platform for continuous long-term recordings of neural activity and behavior in freely moving rodents.

View Article and Find Full Text PDF

Trial-to-trial variability in the execution of movements and motor skills is ubiquitous and widely considered to be the unwanted consequence of a noisy nervous system. However, recent studies have suggested that motor variability may also be a feature of how sensorimotor systems operate and learn. This view, rooted in reinforcement learning theory, equates motor variability with purposeful exploration of motor space that, when coupled with reinforcement, can drive motor learning.

View Article and Find Full Text PDF

Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits.

View Article and Find Full Text PDF

Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity.

View Article and Find Full Text PDF

Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output.

View Article and Find Full Text PDF

To signal the onset of salient sensory features or execute well-timed motor sequences, neuronal circuits must transform streams of incoming spike trains into precisely timed firing. To address the efficiency and fidelity with which neurons can perform such computations, we developed a theory to characterize the capacity of feedforward networks to generate desired spike sequences. We find the maximum number of desired output spikes a neuron can implement to be 0.

View Article and Find Full Text PDF

Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments.

View Article and Find Full Text PDF