Publications by authors named "Benazzoug Y"

Introduction: The chronicity of advanced glycation end-products (AGEs) imparts various damages resulting in metabolic dysfunction and diseases involving inflammation and oxidative stress. The use of plant extracts is of high interest in complementary medicine. Yet, extracts are multicomponent mixtures, and difficult to pinpoint their exact mechanism.

View Article and Find Full Text PDF

Introduction: Cardiovascular diseases were defined as coronary artery, cerebrovascular, or peripheral arterial disease. Hyperhomocysteinemia (Hhcy) is an independent risk factor of cardiovascular diseases, including atherosclerosis. Our previous studies demonstrated the involvement of Hhcy in cardiovascular remodeling in the sand rat Psammomys obesus.

View Article and Find Full Text PDF

Artemisia herba-alba (AHA) is a traditionally used plant to treat various diseases, including diabetes and metabolic dysfunctions. Plant extracts are generally explored empirically without a deeper assessment of their mechanism of action. Here, we describe a combinatorial study of biochemical, molecular, and bioinformatic (metabolite-protein pharmacology network) analyses to elucidate the mechanism of action of AHA and shed light on its multilevel effects in the treatment of diabetes-related advanced glycation end-products (AGE)-induced liver damages.

View Article and Find Full Text PDF

Kidney transplantation is the best treatment received by an uremic patient. One of the major advantages of transplantation is restoring a hormonal profile as before the chronic kidney disease. However, the posttransplant state depends on several factors including the quality of the graft.

View Article and Find Full Text PDF

Objective: Numerous studies have shown that a methionine-rich diet induces hyperhomocysteinemia (Hhcy), a risk factor for cardiovascular diseases. The objective of the present study was to determine the involvement of Hhcy in cardiac remodeling in the sand rat Psammomys obesus.

Materials And Methods: An experimental Hhcy was induced, in the sand rat Psammomys obesus, by intraperitoneal injection of 300 mg/kg of body weight/day of methionine for 1 month.

View Article and Find Full Text PDF

We study the effect of an enriched cholesterol-methionine diet administered to females on the cardiac tissue remodelling of the offspring during two successive pregnancies. Two groups are constituted, standard diet (SD) group fed a standard diet and CD group fed a combined diet (standard + cholesterol 1%-methionine 0.25%).

View Article and Find Full Text PDF

Early weight gain induced by high-fat diet has been identified as a predictor for cardiac disease, one of the most serious public health problems. Our goal is to study the influence of a HFD on biochemical, oxidant stress parameters, and the cardiac ultrastructure in both male and female prepubertal models. Experiments were carried on 24 prepubertal New Zealand white rabbits, randomly assigned to male and female control (MC and FC, resp.

View Article and Find Full Text PDF

Introduction: Elevated plasma homocysteine (Hcy) levels have been associated with several tissue injuries including heart and liver fibrosis. In these diseases, hyperhomocysteinemia (Hhcy) plays a major role in modulating the alteration of the balance between matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMPs), leading to the pathological accumulation of extracellular matrix (ECM) proteins. Since the effect of Hhcy on ECM of seminal vesicle was not studied, the aim of our research was to check if Hcy can induce a remodeling within seminal vesicles ECM.

View Article and Find Full Text PDF

This study investigated whether a high Met diet influences biochemical parameters, MMPs activities in plasma, and biochemical and histological remodeling in aorta, in both pregnant female rabbits and their offspring. Four female rabbit groups are constituted (each = 8), nonpregnant control (NPC), pregnant control (PC) that received normal commercial chow, nonpregnant Met (NPMet), and pregnant Met (PMet) that received the same diet supplemented with 0,35% L-methionine (w/w) for 3 months (500 mg/d). All pregnant females realize 3 successive pregnancies.

View Article and Find Full Text PDF

Hyperhomocysteinemia, defined by an increased plasma homocysteine level, is commonly associated with chronic liver diseases. A link between the elevated homocysteine level and oxidative stress has been demonstrated. Indeed the pathogenesis of liver diseases in the case of hyperhomocysteinemia could be due to this production of oxidative stress.

View Article and Find Full Text PDF

In our study, we propose to analyze the effects of resveratrol (RES) and quercetin (QRC) on proliferation markers, oxidative stress, apoptosis, and inflammation of aortic fibroblasts of Psammomys obesus after induced oxidative stress by hydrogen peroxide (H2O2). Fibroblasts were incubated in RES 375 μM and QRC 0.083 μM for 24 hours after exposure to H2O2 1.

View Article and Find Full Text PDF

Hyperhomocysteinemia, characterized by an elevated plasma homocysteine concentration, leads to several clinical manifestations and particularly cardiovascular diseases. Experimental models of hyperhomocysteinemia revealed several tissue injuries including heart fibrosis and ventricular hypertrophy. In order to analyze the molecular mechanisms link to these morphological alterations, a mild hyperhomocysteinemia was induced in rats via a chronic methionine administration.

View Article and Find Full Text PDF

An immunohistochemical study of matrix metalloproteinases (MMP-2 and MMP-9) or gelatinase (gelatinase A and gelatinase B) was performed on the seminal vesicles and ventral prostate of the Libyan jird (Meriones libycus) collected in the Beni-Abbes area during breeding period (spring and early summer), during resting phase (late summer, autumn, winter) and from castrated animals in the spring. The work was done using the indirect immunohistochemistry protocol by amplification with streptavidin-biotin-peroxidase and AEC as chromogen. In the seminal vesicles, during the breeding period, an important immunohistochemical signal of MMP-2 and MMP-9 was observed in epithelial cells and smooth muscle cells (SMC) without any immunoexpression in the extracellular matrix (ECM) and secretion.

View Article and Find Full Text PDF

Cardiac hypertrophy has been demonstrated in rat models of hyperhomocysteinemia, a major risk factor for chronic heart failure. As one of the molecular pathway which leads to cardiac hypertrophy is mediated by the serine-threonine kinase DYRK1A, we have determined the expression of Dyrk1a in the heart of hyperhomocysteinemic rats and found that hyperhomocysteinemia in rats not only induced ventricular cardiomyocyte hypertrophy but also decreased protein Dyrk1a expression. The decreased expression of Dyrk1a could be consistent with decreased antihypertrophic effects of Dyrk1a leading to cardiomyocyte hypertrophy in case of hyperhomocysteinemia.

View Article and Find Full Text PDF

To simulate diabetic conditions, the effects of high glucose concentration on collagen synthesis and cholesterol level in cultured aortic smooth muscle cells of Psammomys were investigated. For collagen biosynthesis, smooth muscle cells (SMCs) were incubated in synthetic proliferative phase and in postconfluent phase with 3H-proline. Cellular cholesterol was determined by enzymatic method.

View Article and Find Full Text PDF

The extracellular matrix provides a structural framework essential for the functional properties of vessel walls. The three dimensional organization of the extracellular matrix molecules--elastin, collagens, proteoglycans and structural glycoproteins--synthesized during fetal development--is optimal for these functions. Early in life, the vessel wall is subjected to injury: lipid deposition, hypoxia, enzyme secretion and reactive oxygen species production during inflammatory processes, and the extracellular matrix molecules are hydrolyzed by proteases--matrix metalloproteinases, leukocyte elastase, etc.

View Article and Find Full Text PDF

Extracellular matrix macromolecules such as collagen and fibronectin are progressively altered during aging and age-related diseases like diabetes. We investigated the effect of high-glucose concentration (mimicking diabetic conditions) and the influence of in vitro cell aging [comparing 4th-passage fibroblasts (P4) to 15th-passage fibroblasts (P15)] on collagen and fibronectin synthesis. Fibroblasts were incubated at postconfluency with radiolabeled precursors, [3H] proline for collagen, [35S] methionine for fibronectin.

View Article and Find Full Text PDF

The effect of specifically derivatized dextrans, with or without antiproliferative activity on smooth muscle cells (SMC), was investigated on type I and type III collagen biosynthesis and mRNA levels in post-confluent SMC cultures. Our results indicate that dextran derivatives decreased total protein and collagen synthesis independently of their antiproliferative activities. However, the most substituted dextran, the one exhibiting the strongest antiproliferative activity towards SMC, was the most active in modulating type III collagen expression.

View Article and Find Full Text PDF