Publications by authors named "Benat Mallavia"

Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD.

View Article and Find Full Text PDF

The emerging field of regenerative cell therapy is still limited by the few cell types that can reliably be differentiated from pluripotent stem cells and by the immune hurdle of commercially scalable allogeneic cell therapeutics. Here, we show that gene-edited, immune-evasive cell grafts can survive and successfully treat diseases in immunocompetent, fully allogeneic recipients. Transplanted endothelial cells improved perfusion and increased the likelihood of limb preservation in mice with critical limb ischemia.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary ischemia-reperfusion injury (IRI) leads to acute lung injury post-lung transplantation, with NK cells playing a significant but unclear role in the process.
  • Research showed that NK cells increased in number and activity in mouse models of IRI, migrating to lung tissue and becoming more mature after injury.
  • Depleting NK cells reduced lung injury severity, and similar patterns were observed in human patients, suggesting that targeting NK cells might offer new therapeutic options for acute lung injury.
View Article and Find Full Text PDF

Antibodies targeting human leukocyte antigen (HLA)/major histocompatibility complex (MHC) proteins limit successful transplantation and transfusion, and their presence in blood products can cause lethal transfusion-related acute lung injury (TRALI). It is unclear which cell types are bound by these anti-leukocyte antibodies to initiate an immunologic cascade resulting in lung injury. We therefore conditionally removed MHC class I (MHC I) from likely cellular targets in antibody-mediated lung injury.

View Article and Find Full Text PDF

Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge.

View Article and Find Full Text PDF
Article Synopsis
  • The immune system typically fights off pathogens while ignoring the body’s own signals, but during lung transplantation, issues can arise with endogenous mitochondrial DNA (mtDNA) contributing to organ damage.
  • Researchers found that mtDNA is higher in lung transplant cases with primary graft dysfunction (PGD) and triggers inflammation through TLR9 receptors, leading to harmful neutrophil extracellular trap (NET) formation.
  • Therapy targeting DNaseI could offer a dual benefit in PGD by neutralizing the triggering mtDNA and breaking down the damaging NETs, ultimately helping to reduce lung injury.
View Article and Find Full Text PDF

Platelets are recruited to inflammatory foci and contribute to host defense and inflammatory responses. Compared with platelet recruitment in hemostasis and thrombosis, the mechanisms of platelet recruitment in inflammation and host defense are poorly understood. Neutrophil recruitment to lung airspaces after inhalation of bacterial LPS requires platelets and PSGL-1 in mice.

View Article and Find Full Text PDF

Neutrophils dominate the early immune response in pathogen-induced acute lung injury, but efforts to harness their responses have not led to therapeutic advancements. Neutrophil extracellular traps (NETs) have been proposed as an innate defense mechanism responsible for pathogen clearance, but there are concerns that NETs may induce collateral damage to host tissues. Here, we detected NETs in abundance in mouse models of severe bacterial pneumonia/acute lung injury and in human subjects with acute respiratory distress syndrome (ARDS) from pneumonia or sepsis.

View Article and Find Full Text PDF

In resource-limited settings and in the military theater, fresh human whole blood is commonly transfused, but infectious risks are a concern. Sophisticated molecular testing for potential infectious agents in the whole blood is often unavailable. To address this unmet need, pathogen reduction technology (PRT) has been developed, and it is an effective approach to inactivate a broad range of pathogens found in human blood.

View Article and Find Full Text PDF

Platelets are critical for haemostasis, thrombosis, and inflammatory responses, but the events that lead to mature platelet production remain incompletely understood. The bone marrow has been proposed to be a major site of platelet production, although there is indirect evidence that the lungs might also contribute to platelet biogenesis. Here, by directly imaging the lung microcirculation in mice, we show that a large number of megakaryocytes circulate through the lungs, where they dynamically release platelets.

View Article and Find Full Text PDF

Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice ( mice).

View Article and Find Full Text PDF

Pathogen reduction technology (PRT) has been developed in an effort to make the blood supply safer, but there is controversy as to whether it may induce structural or functional changes to platelets that could lead to acute lung injury after transfusion. In this study, we used a commercial PRT system to treat human platelets that were then transfused into immunodeficient mice, and the development of acute lung injury was determined. P-selectin expression was higher in the Mirasol PRT-treated platelets compared to control platelets on storage day 5, but not storage day 1.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are induced by cellular stress and function as molecular chaperones that regulate protein folding. Diabetes impairs the function/expression of many HSPs, including HSP70 and HSP90, key regulators of pathological mechanisms involved in diabetes complications. Therefore, we investigated whether pharmacological HSP90 inhibition ameliorates diabetes-associated renal damage and atheroprogression in a mouse model of combined hyperglycemia and hyperlipidemia (streptozotocin-induced diabetic apolipoprotein E-deficient mouse).

View Article and Find Full Text PDF

Aims/hypothesis: The canonical nuclear factor-κB (NF-κB) pathway mediated by the inhibitor of NF-κB kinase (IKK) regulates the transcription of inflammatory genes involved in the pathogenesis of diabetes, from the early phase to progression and final complications. The NF-κB essential modulator binding domain (NBD) contained in IKKα/β is essential for IKK complex assembly. We therefore investigated the functional consequences of targeting the IKK-dependent NF-κB pathway in the progression of diabetes-associated nephropathy and atherosclerosis.

View Article and Find Full Text PDF

Chronic activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway contributes to vascular inflammation and atherosclerosis by inducing expression of genes involved in cell proliferation, differentiation and migration. We aimed to investigate whether enforced expression of negative regulators, the suppressors of cytokine signaling (SOCS1 and SOCS3), inhibits harmful JAK/STAT-mediated responses and affects atherosclerosis in apolipoprotein E knockout mice. Adenovirus-mediated SOCS1 transgene expression impaired the onset and progression of atherosclerosis without impact on lipid profile, whereas SOCS3 was only effective on early atherosclerosis.

View Article and Find Full Text PDF

Rationale: Primary graft dysfunction (PGD) causes early mortality after lung transplantation and may contribute to late graft failure. No effective treatments exist. The pathogenesis of PGD is unclear, although both neutrophils and activated platelets have been implicated.

View Article and Find Full Text PDF

Evidence is emerging that platelets are major contributors to innate immune responses in conditions such as acute lung injury (ALI). Platelets form heterotypic aggregates with neutrophils, and we hypothesized that lipoxin mediators regulate formation of neutrophil-platelet aggregates (NPA) and that NPA significantly contribute to ALI. Lipopolysaccharide (LPS)-induced lung injury was accompanied by platelet sequestration, activation, intra-alveolar accumulation, and NPA formation within both blood and alveolar compartments.

View Article and Find Full Text PDF

Objective: Activation of Janus kinase/signal transducers and activators of transcription (STAT) pathway by hyperglycemia and dislypidemia contributes to the progression of diabetic complications, including atherosclerosis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate Janus kinase/STAT and have emerged as promising target for anti-inflammatory therapies. We investigated whether a cell-permeable lipopeptide corresponding to the kinase inhibitory region of SOCS1 could reduce atherosclerosis in diabetic mice and identified the mechanisms involved.

View Article and Find Full Text PDF

Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease of the arterial wall. NF-κB is a major regulator of inflammation that controls the expression of many genes involved in atherogenesis. Activated NF-κB was detected in human atherosclerotic plaques, and modulation of NF-κB inflammatory activity limits disease progression in mice.

View Article and Find Full Text PDF

Alzheimer's disease is a severely debilitating disease of high and growing proportions. Hypercholesterolaemia is a key risk factor in sporadic Alzheimer's disease that links metabolic disorders (diabetes, obesity and atherosclerosis) with this pathology. Hypercholesterolaemia is associated with increased levels of immunoglobulin G against oxidized lipoproteins.

View Article and Find Full Text PDF

Among patients with diabetes, increased production of immunoglobulins against proteins modified by diabetes is associated with proteinuria and cardiovascular risk, suggesting that immune mechanisms may contribute to the development of diabetes complications, such as nephropathy. We investigated the contribution of IgG Fcγ receptors to diabetic renal injury in hyperglycemic, hypercholesterolemic mice. We used streptozotocin to induce diabetes in apolipoprotein E-deficient mice and in mice deficient in both apolipoprotein E and γ-chain, the common subunit of activating Fcγ receptors.

View Article and Find Full Text PDF

Renal gene therapy may offer new strategies to treat diseases of native and transplanted kidneys. Several experimental techniques have been developed using viral, nonviral, and cellular vectors, although the effectiveness of such techniques varies widely depending upon the vector used, type of injection, species, and experimental model of renal disease. Here, we describe an optimized technique for renal delivery of DNA in rodents by retrograde renal vein injection as it is currently applied in our laboratory for adenovirus and nonviral vectors.

View Article and Find Full Text PDF

Prevention and treatment of atherosclerosis is still a clinical challenge in the cardiovascular medicine. The classical belief that atherosclerotic lesion development solely depends on lipid deposition has been replaced by the current concept that activation of immune and inflammatory responses plays a central role in plaque initiation and progression. In this review we summarize studies on human and genetically modified animals describing a finite number of cellular and molecular mechanisms that underlie immunoinflammation in atherosclerotic plaques.

View Article and Find Full Text PDF