: To our knowledge, this is the first study that investigated the prognostic value of radiomics features extracted from not only staging 18F-fluorodeoxyglucose positron emission tomography (FDG PET/CT) images, but also post-induction chemotherapy (ICT) PET/CT images. This study aimed to construct a training model based on radiomics features obtained from PET/CT in a cohort of patients with locally advanced head and neck squamous cell carcinoma treated with ICT, to predict locoregional recurrence, development of distant metastases, and the overall survival, and to extract the most significant radiomics features, which were included in the final model. : This retrospective study analyzed data of 55 patients.
View Article and Find Full Text PDFThere is a growing need to develop lead-free shielding materials that are safe, low weight, durable, environmentally friendly, chemically and mechanically stable and customizable for specific applications. Fused deposition modeling (FDM), an additive manufacturing technique based on the extrusion of a thermoplastic filament into a 3D printed object one layer at a time, could be employed well in applications involving ionizing radiation due to its relatively low cost, design flexibility and high manufacturing precision. This study aimed at developing 3D printing composites that contain Titanium dioxide as a filler agent for shielding in a medical radiation environment.
View Article and Find Full Text PDFThe essential component of modern radiation therapy is the application of steep dose gradients during patient treatment in order to maximize the radiation dose to the target volume and protect neighboring heathy tissues. However, volumetric dose distribution in an irradiated target is still a bottleneck of dose verification in modern radiotherapy. Dose gels are almost the only known dosimetry tool which allows for the evaluation of dose distribution in the irradiated volume due to gel's polymerization upon irradiation.
View Article and Find Full Text PDFIn vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour.
View Article and Find Full Text PDFThe interest to application of various surface plasmon resonance (SPR)-based sensors for the investigation of chemical and biological processes in thin layers deposited on the grating's surface/media is developing. Characterisation of processes as well as specimen's features might be performed analysing variations in optical properties (refraction index) of these thin layers. SPR sensors by default are characterised by high resolution and small uncertainties, and measurements might be performed in situ High-resolution, low-cost, SPR-based dosemeter concept has been proposed and realised depositing dose-sensitive nPAG gel layer onto diffraction grating's surface.
View Article and Find Full Text PDFRadiat Prot Dosimetry
July 2015
Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed.
View Article and Find Full Text PDF