Publications by authors named "Benafsha Yosufi"

Purpose: The purpose of this study is to determine whether mouse mammary tumor virus (MMTV)-associated human breast cancer has the same or similar histology to MMTV-associated mouse mammary tumors. Such associations may indicate a role for MMTV in human breast cancer.

Methods: Immunohistochemical techniques (using antibodies directed against the signal peptide p14 of the envelope precursor protein of MMTV) and polymerase chain reaction (PCR) analyses were used to identify MMTV proteins and MMTV-like envelope gene sequences in a series of breast cancers from Australian women.

View Article and Find Full Text PDF

High basal or induced expression of the tripartite motif protein, TRIM16, leads to reduce cell growth and migration of neuroblastoma and skin squamous cell carcinoma cells. However, the role of TRIM16 in melanoma is currently unknown. TRIM16 protein levels were markedly reduced in human melanoma cell lines, compared with normal human epidermal melanocytes due to both DNA methylation and reduced protein stability.

View Article and Find Full Text PDF

DNA methylation is the most well-studied epigenetic modification in cancer biology. 5-hydroxymethylcytosine is an epigenetic mark that can be converted from 5-methylcytosine by the ten-eleven translocation gene family. We recently reported the loss of 5-hydroxymethylcytosine in melanoma compared with benign nevi and suggested that loss of this epigenetic marker is correlated with tumor virulence based on its association with a worse prognosis.

View Article and Find Full Text PDF

Background: The nuclear transcription factor c-Jun is preferentially expressed in basal-cell carcinoma. Dz13 is a deoxyribozyme that targets JUN messenger RNA and has inhibited the growth of a range of tumours in mice. We did a phase 1 study to assess safety and tolerability in human beings.

View Article and Find Full Text PDF

Inositol polyphosphate 5-phosphatases can terminate downstream signalling of phosphatidylinositol-3 kinase; however, their biological role in the pathogenesis of cancer is controversial. Here we report that the inositol polyphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase, has a tumour suppressive role in melanoma. Although it is commonly downregulated in melanoma, overexpression of phosphatidylinositol 4,5-bisphosphate 5-phosphatase blocks Akt activation, inhibits proliferation and undermines survival of melanoma cells in vitro, and retards melanoma growth in a xenograft model.

View Article and Find Full Text PDF