Publications by authors named "Benabdelhak H"

Among the different mechanisms used by bacteria to resist antibiotics, active efflux plays a major role. In Gram-negative bacteria, active efflux is carried out by tripartite efflux pumps that form a macromolecular assembly spanning both membranes of the cellular wall. At the outer membrane level, a well-conserved outer membrane factor (OMF) protein acts as an exit duct, but its sequence varies greatly among different species.

View Article and Find Full Text PDF

Multidrug resistance has become a serious concern in the treatment of bacterial infections. A prominent role is ascribed to the active efflux of xenobiotics out of the bacteria by a tripartite protein machinery. The mechanism of drug extrusion is rather well understood, thanks to the X-ray structures obtained for the Escherichia coli TolC/AcrA/AcrB model system and the related Pseudomonas aeruginosa OprM/MexA/MexB.

View Article and Find Full Text PDF

Complexes of OprM and MexA, two proteins of the MexA-MexB-OprM multidrug efflux pump from Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, were reconstituted into proteoliposomes by detergent removal. Stacks of protein layers with a constant height of 21nm, separated by lipid bilayers, were obtained at stoichiometry of 1:1 (w/w). Using cryo-electron microscopy and tomography, we showed that these protein layers were composed of MexA-OprM complexes self-assembled into regular arrays.

View Article and Find Full Text PDF

Originally described in bacteria, drug transporters are now recognized as major determinants in antibiotics resistance. For Gram-negative bacteria, the reversible assembly consisting of an inner membrane protein responsible for the active transport, a periplasmic protein, and an exit outer membrane channel achieves transport. The opening of the outer membrane protein OprM from Pseudomonas aeruginosa was modeled through normal mode analysis starting from a new X-ray structure solved at 2.

View Article and Find Full Text PDF

Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins.

View Article and Find Full Text PDF

MexA, a periplasmic component of OprM-MexA-MexB tripartite multidrug efflux pump from Pseudomonas aeruginosa, is natively anchored via its fatty acid in the bacteria inner membrane protruding into the periplasm. We used supported lipid bilayer (SLB) to attach the protein to a single leaflet mimicking its perisplamic orientation. For that purpose, we studied the solubilization of DOPC lipid bilayer supported on silica surface with beta-octyl glucoside (betaOG).

View Article and Find Full Text PDF

Mimetic functional membranes on solid support are now emerging for the development of membrane biosensor or for the study of membrane-mediated processes and should have an important impact on biodiagnostics. We established a method to reconstitute a membrane protein into a lipid membrane in a selective orientation on a solid support. Membrane protein OprM, a component of OprM-MexA-MexB multidrug efflux pump, solubilized in detergent was immobilized via its extracellular domain on aminosilane-modified silica surface.

View Article and Find Full Text PDF

OprM and OprN belong to the outer membrane factor family proteins. These approximately 52 kDa proteins are part of the tripartite efflux pumps found in Pseudomonas aeruginosa and are responsible in part for the antibiotic resistance observed in these bacteria. Both proteins have been expressed in Escherichia coli as His-tag proteins and purified accordingly by affinity chromatography in the presence of n-octyl-beta-D-glucopyranoside detergent.

View Article and Find Full Text PDF

Nucleotide-binding domains (NBD) are highly conserved constituents of ATP-binding cassette (ABC) transporters. Members of this family couple ATP hydrolysis to the transfer of various molecules across cell membranes. The NBD of the HlyB transporter, HlyB-NBD, was characterized with respect to its uncoupled ATPase activity, oligomeric state, and stability in solution.

View Article and Find Full Text PDF

OprM and OprN belong to the outer membrane factor family of multidrug efflux proteins from Pseudomonas aeruginosa, a bacterium responsible of nosocomial infections. We report here the two-dimensional (2D) crystallization of OprN and OprM into lipid bilayers and the determination of their 2D projected structure by cryo-electron crystallography, at 1 and 1.4 nm, respectively.

View Article and Find Full Text PDF

The ATPase activity of the ABC (ATP-binding cassette) ATPase domain of the HlyB (haemolysin B) transporter is required for secretion of Escherichia coli haemolysin via the type I pathway. Although ABC transporters are generally presumed to function as dimers, the precise role of dimerization remains unclear. In the present study, we have analysed the HlyB ABC domain, purified separately from the membrane domain, with respect to its activity and capacity to form physically detectable dimers.

View Article and Find Full Text PDF

The ABC-transporter haemolysin B is a central component of the secretion machinery that translocates the toxin, haemolysin A, in a Sec-independent fashion across both membranes of E. coli. Here, we report the X-ray crystal structure of the nucleotide-binding domain (NBD) of HlyB.

View Article and Find Full Text PDF

A member of the family of RTX toxins, Escherichia coli haemolysin A, is secreted from Gram-negative bacteria. It carries a C-terminal secretion signal of approximately 50 residues, targeting the protein to the secretion or translocation complex, in which the ABC-transporter HlyB is a central element. We have purified the nucleotide-binding domain of HlyB (HlyB-NBD) and a C-terminal 23kDa fragment of HlyA plus the His-tag (HlyA1), which contains the secretion sequence.

View Article and Find Full Text PDF

Haemolysin B (HlyB) is a transmembrane protein which belongs to the superfamily of ABC transporters. In vivo, it mediates the non-classical translocation of the 107 kDa toxin HlyA across both membranes of Escherichia coli together with haemolysin D and the outer membrane protein TolC. The cytosolic ATP-binding domain of HlyB has been overexpressed and purified as an N-terminal His-tag fusion protein.

View Article and Find Full Text PDF

We have identified a yeast nuclear gene (FMC1) that is required at elevated temperatures (37 degrees C) for the formation/stability of the F(1) sector of the mitochondrial ATP synthase. Western blot analysis showed that Fmc1p is a soluble protein located in the mitochondrial matrix. At elevated temperatures in yeast cells lacking Fmc1p, the alpha-F(1) and beta-F(1) proteins are synthesized, transported, and processed to their mature size.

View Article and Find Full Text PDF