Publications by authors named "BenBen Song"

In the production of biological therapeutics such as monoclonal antibodies (mAbs), ultrafiltration and diafiltration (UF/DF) are widely regarded as effective downstream processing steps capable of removing process equipment related leachables (PERLs) introduced upstream of the UF/DF step. However, clearance data available in the literature are limited to species with low partition coefficients (log P) such as buffer ions, hydrophilic organic compounds, and some metal ions. Additional data for a wide range of PERLs including hydrophobic compounds and elemental impurities are needed to establish meaningful, comprehensive safety risk assessments.

View Article and Find Full Text PDF

The rational and predictable enhancement of protein stability is an important goal in protein design. Most efforts target the folded state, however stability is the free energy difference between the folded and unfolded states thus both are suitable targets. Strategies directed at the unfolded state usually seek to decrease chain entropy by introducing cross-links or by replacing glycines.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) poses a global threat to public health. HCV envelop protein E2 is the major component on the virus envelope, which plays an important role in virus entry and morphogenesis. Here, for the first time, we affinity purified E2 complex formed in HCV-infected human hepatoma cells and conducted comparative mass spectrometric analyses.

View Article and Find Full Text PDF

Hemopressin is a naturally occurring and therapeutically relevant peptide with applications in hypertension, pain, addiction, and obesity. We had previously demonstrated that hemopressin converts into amyloid-like fibrils under aqueous conditions. However, the amino acid residues that modulate the aggregation propensity of hemopressin were not identified.

View Article and Find Full Text PDF

To identify new cardiac biomarkers, a quantitative proteomic analysis has been performed on serum and heart tissue proteins from three species of nonhuman primates following isoproterenol (ISO) treatment. Three serum proteins--serum amyloid A (SAA), α-1-acid glycoprotein (A1AG), and apolipoprotein A-1 (Apo A1)--were consistently identified as changed and remained altered 72 h post dose in all three species post ISO treatment, indicating the potential of including these proteins in preclinical or clinical evaluation of drug-induced cardiac injury. Furthermore, proteomic analysis of heart tissue proteins following ISO treatment demonstrated detrimental effects on calcium signaling and energy generation in cardiac myocytes.

View Article and Find Full Text PDF

Vaginal microbicides hold great promise for the prevention of viral diseases like HIV, but the failure of several microbicide candidates in clinical trials has raised important questions regarding the parameters to be evaluated to determine in vivo efficacy in humans. Clinical trials of the candidate microbicides nonoxynol-9 (N9) and cellulose sulfate revealed an increase in HIV infection, vaginal inflammation, and recruitment of HIV susceptible lymphocytes, highlighting the need to identify biomarkers that can accurately predict microbicide toxicity early in preclinical development and in human trials. We used quantitative proteomics and RT-PCR approaches in mice and rabbits to identify protein changes in vaginal fluid and tissue in response to treatment with N9 or benzalkonium chloride (BZK).

View Article and Find Full Text PDF

Tyrosine kinase inhibitors show great promise as clinical therapies, but small molecule inhibitors that are available in the clinic and under development bind to the adenosine triphosphate binding domain of the kinase, potentially limiting efficacy and selectivity. The development of antisense peptide inhibitors is a relatively unexplored area of research, and here we investigate inhibitory peptides specific for the Janus-associated kinase (JAK) family member, tyrosine kinase 2 (TYK2). We have developed peptides that are 2-3 times more selective for TYK2 than other JAK family members, with a TYK2 IC50 of 1.

View Article and Find Full Text PDF

The assessment of cardiac toxicity is a major challenge in both drug development and clinical trials, and numerous marketed pharmaceuticals have been removed from the market due to unpredicted cardiac effects. Serum troponins are widely used indicators of cardiac injury; however, they are short-lived and have not been validated in preclinical animal models. In this study, we have used filter-aided sample preparation (FASP) and tandem mass tag (TMT) labeling to investigate serum protein alterations in isoproterenol-treated African green monkeys.

View Article and Find Full Text PDF

Serine-Proline (SP) dipeptide motifs have been shown to form unique hydrogen-bonding patterns in protein crystal structures. Peptides were designed to mimic these patterns by forming the 6 + 10 and the 9 + 10 hydrogen-bonded rings. Factors that contribute to the formation of SP turns include controlling backbone flexibility and amino acid chirality along with creating a hydrophobic environment around the intramolecular hydrogen bonds.

View Article and Find Full Text PDF

Aiming to design short linear peptides featuring strong intramolecular hydrogen bonds in water, a series of tetrapeptides based on the sequence Ac-Ala-Pro-Ala-Ala-NH(2) containing all possible combinations of L- and D-amino acids was synthesized. A regiospecific combination of heterochiral residues (DDLL or its mirror image LLDD) can be used to increase turn formation and stability within short peptides in water.

View Article and Find Full Text PDF

Villin-type headpiece domains are ∼70 residue motifs that reside at the C-terminus of a variety of actin-associated proteins. Villin headpiece (HP67) is a commonly used model system for both experimental and computational studies of protein folding. HP67 is made up of two subdomains that form a tightly packed interface.

View Article and Find Full Text PDF

Using a combination of an aromatic amino acid, a homoserine side chain, and a d-amino acid, a series of linear tetrapeptides were designed that adopt an "Hse turn" in water. The conformation was stabilized by intramolecular hydrogen bonds even in the presence of surrounding water molecules. In particular, the peptide with sequence H-Abz-Homoser-Ser-d-Gln-NH(2) showed significant through-space interactions and its free energy of folding is estimated to be on the order of -4 kcal/mol.

View Article and Find Full Text PDF

The traditional approach to studying protein folding involves applying a perturbation, usually denaturant or mutation, and determining the effect upon the free energy of folding, DeltaG0, and the activation free energy, DeltaG(not equal). Data collected as a function of the perturbation can be used to construct rate equilibrium free-energy relationships, which report on the development of interactions in the transition state for folding. We examine the use of the ionic-strength-dependent rate equilibrium free-energy relationship in protein folding using the N-terminal domain of L9, a small alpha-beta protein, as a model system.

View Article and Find Full Text PDF

Isotope-edited IR of proteins has generated considerable interest. Double labeling with 13C and 18O with high levels of isotopic enrichment is required for residue-specific resolution. Current methods for the preparation of doubly labeled amino acids give modest 18O enrichment, limiting the utility of the approach.

View Article and Find Full Text PDF

Amyloid formation has been implicated in a wide range of human diseases including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. In type 2 diabetes, islet amyloid polypeptide (IAPP, also known as amylin) forms cytotoxic amyloid deposits in the pancreas, and these are believed to contribute to the pathology of the disease. The mechanism of islet amyloid formation is not understood; however, recent proposals have invoked a role for incompletely processed proIAPP.

View Article and Find Full Text PDF

Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides.

View Article and Find Full Text PDF

A major difficulty in experimental studies of protein folding is the lack of nonperturbing, residue specific probes of folding. Here, we demonstrate the ability to resolve protein folding dynamics at the level of a single residue using 13C=18O isotope-edited infrared spectroscopy. A single 13C=18O isotopic label was incorporated into the backbone of the 36 residue, three-helix bundle villin headpiece subdomain (HP36).

View Article and Find Full Text PDF

A major goal of protein engineering is the enhancement of protein stability. Here we demonstrate a rational method for enhancing the stability of globular proteins by targeting glycine residues which adopt conformations with Phi > 0. Replacement of such a glycine by d-alanine can lead to a significant increase in stability.

View Article and Find Full Text PDF