Publications by authors named "Ben-Meriem Z"

Hydra vulgaris, long known for its remarkable regenerative capabilities, is also a long-standing source of inspiration for models of spontaneous patterning. Recently it became clear that early patterning during Hydra regeneration is an integrated mechanochemical process whereby morphogen dynamics is influenced by tissue mechanics. One roadblock to understanding Hydra self-organization is our lack of knowledge about the mechanical properties of these organisms.

View Article and Find Full Text PDF

Conventional culture conditions are oftentimes insufficient to study tissues, organisms, or 3D multicellular assemblies. They lack both dynamic chemical and mechanical control over the microenvironment. While specific microfluidic devices have been developed to address chemical control, they often do not allow the control of compressive forces emerging when cells proliferate in a confined environment.

View Article and Find Full Text PDF

Mammalian cells integrate different types of stimuli that govern their fate. These stimuli encompass biochemical as well as biomechanical cues (shear, tensile, and compressive stresses) that are usually studied separately. The phosphatidylinositol 3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways.

View Article and Find Full Text PDF

While many cellular mechanisms leading to chemotherapeutic resistance have been identified, there is an increasing realization that tumor-stroma interactions also play an important role. In particular, mechanical alterations are inherent to solid cancer progression and profoundly impact cell physiology. Here, we explore the influence of compressive stress on the efficacy of chemotherapeutics in pancreatic cancer spheroids.

View Article and Find Full Text PDF

When exposed to lethal doses of antibiotics, bacterial populations are most often not completely eradicated. A small number of phenotypic variants, defined as 'persisters', are refractory to antibiotics and survive treatment. Despite their involvement in relapsing infections, processes determining phenotypic switches from and to the persister state largely remain elusive.

View Article and Find Full Text PDF

Obtaining single cell data from time-lapse microscopy images is critical for quantitative biology, but bottlenecks in cell identification and segmentation must be overcome. We propose a novel, versatile method that uses machine learning classifiers to identify cell morphologies from z-stack bright-field microscopy images. We show that axial information is enough to successfully classify the pixels of an image, without the need to consider in focus morphological features.

View Article and Find Full Text PDF