Nickel-rich layered oxides have been regarded as a potential cathode material for high-energy-density lithium-ion batteries because of the high specific capacity and low cost. However, the rapid capacity fading due to interfacial side reactions and bulk structural degradation seriously encumbers its commercialization. Herein, a highly stable hybrid surface architecture, which integrates an outer coating layer of TiO&LiTiO and a surficial titanium doping by incorporated TiO, is carefully designed to enhance the structural stability and eliminate lithium impurity.
View Article and Find Full Text PDFA binder is an important component in lithium-ion batteries and plays a significant role in maintaining the properties of active substances. Most studies in the field of binders have only focussed on physical properties such as bonding performance. Here, a polyacrylic acid-modified binder was designed and adapted to Li[NiCoMn]O, which enhanced the electrochemical stability of Li[NiCoMn]O from 30.
View Article and Find Full Text PDFMetal sulfides have been intensively investigated for efficient sodium-ion storage due to their high capacity. However, the mechanisms behind the reaction pathways and phase transformation are still unclear. Moreover, the effects of designed nanostructure on the electrochemical behaviors are rarely reported.
View Article and Find Full Text PDFNi-rich cathodes LiNiCoAlO (0.8 < < 1) with high energy density, environmental benignity, and low cost are regarded as the most promising candidate materials for next-generation lithium batteries. Unfortunately, capacity fading derived from unstable surface properties and intrinsic structural instability under extreme conditions limits large-scale commercial utilization.
View Article and Find Full Text PDFInjection of phase transition from a layered to rock-salt phase into the bulk lattice and side reactions on the interfacial usually causes structure degradation, quick capacity/voltage decay, and even thermal instability. Here, a self-formed interfacial protective layer coupled with lattice tuning was constructed for Ni-rich cathodes by simultaneous incorporation of Zr and Al in a one-step calcination. The migration energy between Zr and Al from the surface into the bulk lattice induces dual modifications from the surface into the bulk lattice, which effectively decrease the formation of cation mixing, the degree of anisotropic lattice change, and the generation of microcracks.
View Article and Find Full Text PDFDemands for large-scale energy storage systems have driven the development of layered transition-metal oxide cathodes for room-temperature rechargeable sodium ion batteries (SIBs). Now, an abnormal layered-tunnel heterostructure Na Co Mn O cathode material induced by chemical element substitution is reported. By virtue of beneficial synergistic effects, this layered-tunnel electrode shows outstanding electrochemical performance in sodium half-cell system and excellent compatibility with hard carbon anode in sodium full-cell system.
View Article and Find Full Text PDFSpinel-type LiMnO cathode materials commonly suffer from manganese dissolution due to the severe interfacial side reactions especially at elevated temperature. Here, a 3D hollow fusiform LiMnO cathode material is reported with preferentially exposed stable {111} facets and seamless outer structure, which is clearly confirmed by microfocused ion beam scanning electron microscopy, high-resolution transmission electron microscopy as well as scanning transmission electron microscopy with atomic resolution. Owing to the optimal geometrical structure design and the preferentially exposed stable {111} facets, the electrode delivers excellent rate capability (107.
View Article and Find Full Text PDFComposite cathodes have attracted great attention due to the integrated advantages of each pure structure. Also, the component ratio deserves a careful modulation to further improve the corresponding electrochemical performance. Mn-based layer-tunnel hybrid composite became a focus in sodium-ion batteries due to the superiority in terms of high performance, low cost, and nontoxicity.
View Article and Find Full Text PDFAs one of the most promising cathodes for rechargeable sodium-ion batteries (SIBs), O3-type layered transition metal oxides commonly suffer from inevitably complicated phase transitions and sluggish kinetics. Here, a Na[Li Ni Mn Cu Mg ]O cathode material with the exposed {010} active facets by multiple-layer oriented stacking nanosheets is presented. Owing to reasonable geometrical structure design and chemical substitution, the electrode delivers outstanding rate performance (71.
View Article and Find Full Text PDFNickel-rich layered oxides are regarded as very promising materials as cathodes for lithium-ion batteries because of their environmental benignancy, low cost, and high energy density. However, insufficient cycle performance and poor thermotic characteristics induced by structural degradation at high potentials and elevated temperatures pose challenging hurdles for nickel-rich cathodes. Here, a protective pillaring layer, in which partial Ni ions occupy Li slabs induced by gradient Mn, is integrated into the primary particle of LiNiCoAlO to stabilize the surface/interfacial structure.
View Article and Find Full Text PDFSodium-ion batteries (SIBs) have been regarded as a promising candidate for large-scale renewable energy storage system. Layered manganese oxide cathode possesses the advantages of high energy density, low cost and natural abundance while suffering from limited cycling life and poor rate capacity. To overcome these weaknesses, layer-tunnel hybrid material was developed and served as the cathode of SIB, which integrated high capacity, superior cycle ability, and rate performance.
View Article and Find Full Text PDFA synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase.
View Article and Find Full Text PDFLiMn0.5Fe0.5PO4 (LMFP) materials are synthesized by the hydrothermal approach in an organic-free and surfactant-free aqueous solution.
View Article and Find Full Text PDF