Publications by authors named "Ben-Dor S"

In this study, we find that Mif expression is associated with tumor growth and aggressiveness, specifically in tumors with low heterogeneity. These findings could facilitate the development of new strategies to treat patients with homogeneous, high MIF-expressing tumors that are unresponsive to immune checkpoint therapy.

View Article and Find Full Text PDF

Proteasomes are essential for protein degradation and maintaining cellular balance, yet their roles in extracellular fluids are not well understood. Our study investigates the freely circulating proteasome in blood, to uncover its unique molecular characteristics, compared to its intracellular counterparts. Using a transgenic mouse model, mass spectrometry, and biochemical tools, we show that the predominant proteasome in serum is the free uncapped 20S particle, which seems to assemble intracellularly before entering the bloodstream.

View Article and Find Full Text PDF
Article Synopsis
  • Low intra-tumor heterogeneity (ITH) is linked to better patient survival and response to immunotherapy, but the role of immune factors in tumor aggressiveness remains unclear.
  • Researchers studied immune escape mechanisms in mouse tumors with low ITH, finding non-rejected clones had more tumor-associated macrophages and T-cell exhaustion compared to rejected ones.
  • They identified Mif as a key factor in immune rejection; knocking it out led to smaller tumors and lower macrophage infiltration, a finding that was supported by data from melanoma patients.
View Article and Find Full Text PDF

The relationship between membrane proteins and the lipid constituents of the membrane bilayer depends on finely-tuned atomic interactions, which itself depends on the precise distribution of amino acids within the 3D structure of the protein. In this regard, tryptophan (Trp), one of the least abundant amino acids, is found at higher levels in transmembrane proteins where it likely plays a role in helping anchor them to the membrane. We now re-evaluate Trp distribution in membrane proteins using all known proteins in the Swiss-Prot database and confirm that it is somewhat higher (∼1.

View Article and Find Full Text PDF
Article Synopsis
  • Mitophagy is a process that helps get rid of damaged parts of cells called mitochondria, and problems with it can lead to diseases as we age.
  • Researchers found that a protein called Siah3 stops mitophagy and helps mice develop their nerves in a better way.
  • Mice without Siah3 showed that their nerve cells didn’t break down as quickly when they lost support, suggesting that Siah3 plays a big role in how cells manage their health and growth.
View Article and Find Full Text PDF

Maternal malnutrition has been associated with neurodevelopmental deficits and long-term implications on the offspring's health and behavior. Here, we investigated the effects of maternal low-protein diet (LPD) or obesity-inducing maternal high-fat diet (HFD) on dyadic social interactions, group organization and autism-related behaviors in mice. We found that maternal HFD induced an autism-related behavioral phenotype in the male offspring, including a robust decrease in sociability, increased aggression, cognitive rigidity and repetitive behaviors.

View Article and Find Full Text PDF

Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) in multiple tumors is associated with a poor prognosis partly because of the metabolic diversion of cytosolic aspartate for pyrimidine synthesis, supporting proliferation and mutagenesis owing to nucleotide imbalance. Here, we find that prolonged loss of ASS1 promotes DNA damage in colon cancer cells and fibroblasts from subjects with citrullinemia type I. Following acute induction of DNA damage with doxorubicin, ASS1 expression is elevated in the cytosol and the nucleus with at least a partial dependency on p53; ASS1 metabolically restrains cell cycle progression in the cytosol by restricting nucleotide synthesis.

View Article and Find Full Text PDF

is a member of the complex, where all members to date are reported to be pathogenic fungi. We have isolated a strain, from the gut of mice that seems to be a commensal strain and sequenced its genome.

View Article and Find Full Text PDF

The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines.

View Article and Find Full Text PDF

Background: Fetal growth restriction (FGR) is a pregnancy complication in which a newborn fails to achieve its growth potential, increasing the risk of perinatal morbidity and mortality. Chronic maternal gestational hypoxia, as well as placental insufficiency are associated with increased FGR incidence; however, the molecular mechanisms underlying FGR remain unknown.

Methods: Pregnant mice were subjected to acute or chronic hypoxia (12.

View Article and Find Full Text PDF

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood.

View Article and Find Full Text PDF

Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH.

View Article and Find Full Text PDF

Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta.

View Article and Find Full Text PDF

Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations in the autoimmune regulator (AIRE) gene. Most patients present with severe chronic mucocutaneous candidiasis and organ-specific autoimmunity from early childhood, but the clinical picture is highly variable. AIRE is crucial for negative selection of T cells, and scrutiny of different patient mutations has previously highlighted many of its molecular mechanisms.

View Article and Find Full Text PDF

In trees, nonstructural carbohydrates (NSCs) serve as long-term carbon storage and long-distance carbon transport from source to sink. NSC management in response to drought stress is key to our understanding of drought acclimation. However, the molecular mechanisms underlying these processes remain unclear.

View Article and Find Full Text PDF

Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected.

View Article and Find Full Text PDF

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells.

View Article and Find Full Text PDF

Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics.

View Article and Find Full Text PDF

Lymphocyte priming in lymph nodes (LNs) was postulated to depend on the formation of stable T cell receptor (TCR)-specific immune synapses (ISs) with antigen (Ag)-presenting dendritic cells (DCs). The high-affinity LFA-1 ligand ICAM-1 was implicated in different ISs studied in vitro. We dissect the in vivo roles of endogenous DC ICAM-1 in Ag-stimulated T cell proliferation and differentiation and find that under type 1 polarizing conditions in vaccinated or vaccinia virus-infected skin-draining LNs, Ag-presenting DCs engage in ICAM-1-dependent stable conjugates with a subset of Ag-specific CD8 blasts.

View Article and Find Full Text PDF

Phytoplankton produce the volatile dimethyl sulfide (DMS), an important infochemical mediating microbial interactions, which is also emitted to the atmosphere and affecting the global climate. Albeit the enzymatic source for DMS in eukaryotes was elucidated, namely a DMSP lyase (DL) called Alma1, we still lack basic knowledge regarding its taxonomic distribution. We defined unique sequence motifs which enable the identification of DL homologs (DLHs) in model systems and environmental populations.

View Article and Find Full Text PDF

Marine viruses play a key role in regulating phytoplankton populations, greatly affecting the biogeochemical cycling of major nutrients in the ocean. Resistance to viral infection has been reported for various phytoplankton species under laboratory conditions. Nevertheless, the occurrence of resistant cells in natural populations is underexplored due to the lack of sensitive tools to detect these rare phenotypes.

View Article and Find Full Text PDF

Microbial interactions govern marine biogeochemistry. These interactions are generally considered to rely on exchange of organic molecules. Here we report on a novel inorganic route of microbial communication, showing that algal-bacterial interactions between Phaeobacter inhibens bacteria and Gephyrocapsa huxleyi algae are mediated through inorganic nitrogen exchange.

View Article and Find Full Text PDF