Publications by authors named "Ben Woodcroft"

Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure.

View Article and Find Full Text PDF

Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires knowledge of the spatial drivers of river microbiomes. However, understanding of the core microbial processes governing river biogeochemistry is hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we used a community science effort to accelerate the sampling, sequencing and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb).

View Article and Find Full Text PDF

Interactions between microbiomes and metabolites play crucial roles in the environment, yet how these interactions drive greenhouse gas emissions during ecosystem changes remains unclear. Here we analysed microbial and metabolite composition across a permafrost thaw gradient in Stordalen Mire, Sweden, using paired genome-resolved metagenomics and high-resolution Fourier transform ion cyclotron resonance mass spectrometry guided by principles from community assembly theory to test whether microorganisms and metabolites show concordant responses to changing drivers. Our analysis revealed divergence between the inferred microbial versus metabolite assembly processes, suggesting distinct responses to the same selective pressures.

View Article and Find Full Text PDF

Shotgun metagenomics is a powerful tool for studying the genomic traits of microbial community members, such as genome size, gene content, etc. While such traits can be used to better understand the ecology and evolution of microbial communities, the accuracy of their estimations can be critically influenced by both known and unknown factors. One factor that can bias trait estimations is the proportion of eukaryotic and viral DNA in a metagenome, as some bioinformatic tools assume that all DNA reads in a metagenome are bacterial or archaeal.

View Article and Find Full Text PDF
Article Synopsis
  • Phylogenetic reconciliation is a method used to study how gene trees evolve in relation to species trees, helping to explain changes through events like gene duplications and losses.
  • This approach is beneficial for understanding genome evolution, aiding in tasks such as inferring ancestral gene content and analyzing metabolic evolution across microbial lineages.
  • There are many opportunities to expand this method in microbiology, including improving models for realism, scalability, and integrating ecological factors to enhance our understanding of microbial diversity.
View Article and Find Full Text PDF
Article Synopsis
  • - Borgs are large extrachromosomal elements associated with "Candidatus Methanoperedens" archaea, and researchers used nanopore sequencing to validate and reconstruct genomes, revealing 13 complete and four near-complete genomes that share 40 key genes.
  • - These conserved genes helped identify new Borgs in peatland soil and map their evolutionary relationships, showing two main clades; importantly, Borg genes related to electron transfer and cell surface proteins are more highly expressed than those of the host.
  • - The study also reconstructed the first complete genome of a Methanoperedens thought to host Borgs, revealing unique methylation patterns that may help distinguish their genomes, and suggests that Borgs could exist independently from
View Article and Find Full Text PDF

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch.

View Article and Find Full Text PDF
Article Synopsis
  • Wetlands produce a lot of methane (a type of gas), but scientists don't fully understand how the tiny organisms in these areas work, which makes it hard to know how much methane will be released as the climate changes.
  • Researchers studied a special wetland in Sweden called Stordalen Mire and discovered that many microbes there can create methane using different sources, like certain chemicals found in the water.
  • This study shows that both methane-producing and methane-using bacteria are important for understanding how gases are emitted from wetlands, especially as permafrost (frozen ground) thaws due to climate change.
View Article and Find Full Text PDF

Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb).

View Article and Find Full Text PDF

Advances in sequencing technologies and bioinformatics tools have dramatically increased the recovery rate of microbial genomes from metagenomic data. Assessing the quality of metagenome-assembled genomes (MAGs) is a critical step before downstream analysis. Here, we present CheckM2, an improved method of predicting genome quality of MAGs using machine learning.

View Article and Find Full Text PDF

Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution, and ecological functions remains poorly constrained. Here, we present the largest dataset of Bathyarchaeia metagenome assembled genome to date and reclassify Bathyarchaeia into eight order-level units corresponding to the former subgroup system.

View Article and Find Full Text PDF
Article Synopsis
  • 'Candidatus Methanoperedens' are crucial archaea for methane cycling and were studied in a bioreactor where they oxidized methane while reducing nitrate.
  • Fluorescence in situ hybridization (FISH) showed two forms of 'Ca. M. nitroreducens': typical coccobacilli and newly found planktonic rods, both sharing the same genome but expressing different genes for metabolism and motility.
  • Additionally, some coccobacilli stored carbon as polyhydroxyalkanoates, indicating phenotypic diversity that enhances their adaptability in challenging environments.
View Article and Find Full Text PDF

Background: Microbial communities in both natural and applied settings reliably carry out myriads of functions, yet how stable these taxonomically diverse assemblages can be and what causes them to transition between states remains poorly understood. We studied monthly activated sludge (AS) samples collected over 9 years from a full-scale wastewater treatment plant to answer how complex AS communities evolve in the long term and how the community functions change when there is a disturbance in operational parameters.

Results: Here, we show that a microbial community in activated sludge (AS) system fluctuated around a stable average for 3 years but was then abruptly pushed into an alternative stable state by a simple transient disturbance (bleaching).

View Article and Find Full Text PDF

Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH) from sediments. Ebullitive CH flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH flux relationship differs spatially across two post-glacial lakes in Sweden.

View Article and Find Full Text PDF

Asgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the deep subsurface, brackish shallow lakes, and geothermal spring sediments.

View Article and Find Full Text PDF

Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation.

View Article and Find Full Text PDF

Methane is a key compound in the global carbon cycle that influences both nutrient cycling and the Earth's climate. A limited number of microorganisms control the flux of biologically generated methane, including methane-metabolizing archaea that either produce or consume methane. Methanogenic and methanotrophic archaea belonging to the phylum Euryarchaeota share a genetically similar, interrelated pathway for methane metabolism.

View Article and Find Full Text PDF

The methyl-coenzyme M reductase (MCR) complex is a key enzyme in archaeal methane generation and has recently been proposed to also be involved in the oxidation of short-chain hydrocarbons including methane, butane, and potentially propane. The number of archaeal clades encoding the MCR continues to grow, suggesting that this complex was inherited from an ancient ancestor, or has undergone extensive horizontal gene transfer. Expanding the representation of MCR-encoding lineages through metagenomic approaches will help resolve the evolutionary history of this complex.

View Article and Find Full Text PDF

The phylum Caldiserica was identified from the hot spring 16S rRNA gene lineage 'OP5' and named for the sole isolate Caldisericum exile, a hot spring sulfur-reducing chemoheterotroph. Here we characterize 7 Caldiserica metagenome-assembled genomes (MAGs) from a thawing permafrost site in Stordalen Mire, Arctic Sweden. By 16S rRNA and marker gene phylogenies, and average nucleotide and amino acid identities, these Stordalen Mire Caldiserica (SMC) MAGs form part of a divergent clade from C.

View Article and Find Full Text PDF

Rapidly thawing permafrost harbors ∼30 to 50% of global soil carbon, and the fate of this carbon remains unknown. Microorganisms will play a central role in its fate, and their viruses could modulate that impact via induced mortality and metabolic controls. Because of the challenges of recovering viruses from soils, little is known about soil viruses or their role(s) in microbial biogeochemical cycling.

View Article and Find Full Text PDF

Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden.

View Article and Find Full Text PDF

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation.

View Article and Find Full Text PDF

The fate of carbon sequestered in permafrost is a key concern for future global warming as this large carbon stock is rapidly becoming a net methane source due to widespread thaw. Methane release from permafrost is moderated by methanotrophs, which oxidise 20-60% of this methane before emission to the atmosphere. Despite the importance of methanotrophs to carbon cycling, these microorganisms are under-characterised and have not been studied across a natural permafrost thaw gradient.

View Article and Find Full Text PDF