Publications by authors named "Ben Wilenkin"

Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle.

View Article and Find Full Text PDF

While genetic evidence shows that the Nav1.7 voltage-gated sodium ion channel is a key regulator of pain, it is unclear exactly how Nav1.7 governs neuronal firing and what biophysical, physiological, and distribution properties of a pharmacological Nav1.

View Article and Find Full Text PDF

Herein the discovery of a novel class of aminoheterocyclic Na(v)1.7 antagonists is reported. Hit compound 1 was potent but suffered from poor pharmacokinetics and selectivity.

View Article and Find Full Text PDF

Clinical genetic data have shown that the product of the SCN9A gene, voltage-gated sodium ion channel Nav1.7, is a key control point for pain perception and a possible target for a next generation of analgesics. Sodium channels, however, historically have been difficult drug targets, and many of the existing structure-activity relationships (SAR) have been defined on pharmacologically modified channels with indirect reporter assays.

View Article and Find Full Text PDF

Clinical human genetic studies have recently identified the tetrodotoxin (TTX) sensitive neuronal voltage gated sodium channel Nav1.7 (SCN9A) as a critical mediator of pain sensitization. Herein, we report structure-activity relationships for a novel series of 2,4-diaminotriazines that inhibit hNav1.

View Article and Find Full Text PDF