Publications by authors named "Ben Wen Li"

Background: Paragonimiasis is an important and widespread neglected tropical disease. Fifteen Paragonimus species are human pathogens, but two of these, Paragonimus westermani and P. skrjabini, are responsible for the bulk of human disease.

View Article and Find Full Text PDF

Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of "classical" anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8.

View Article and Find Full Text PDF

Glutamate-gated chloride channels (GluCl) are targets for avermectin/milbemycin (A/M) anthelmintics such as ivermectin that cause paralysis of somatic and pharyngeal muscles in gastrointestinal nematodes. Ivermectin is useful for onchocerciasis control programs because of its activity against microfilariae that often cause ocular disease and severe dermatitis. However, mechanisms responsible for reduced microfilaria production by adult worms following ivermectin treatment are poorly understood.

View Article and Find Full Text PDF

Over a billion people are infected by Ascaris spp. intestinal parasites. To clarify functional differences among tissues of adult A.

View Article and Find Full Text PDF

Background: Brugia malayi is a nematode parasite that causes lymphatic filariasis, a disfiguring and disabiling tropical disease. Although a first draft genome sequence was released in 2007, very little is understood about transcription programs that govern developmental changes required for the parasite's development and survival in its mammalian and insect hosts.

Results: We used a microarray with probes that represent some 85% of predicted genes to generate gene expression profiles for seven parasite life cycle stages/sexes.

View Article and Find Full Text PDF

Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets.

View Article and Find Full Text PDF

Background: A better understanding of reproductive processes in parasitic nematodes may lead to development of new anthelmintics and control strategies for combating disabling and disfiguring neglected tropical diseases such as lymphatic filariasis and onchocerciasis. Transcriptomatic analysis has provided important new insights into mechanisms of reproduction and development in other invertebrates. We have performed the first genome-wide analysis of gender-associated (GA) gene expression in a filarial nematode to improve understanding of key reproductive processes in these parasites.

View Article and Find Full Text PDF

Background: Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3) are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections.

View Article and Find Full Text PDF

We used in situ hybridization (ISH) to localize expression of gender-biased genes in the filarial parasite Brugia malayi that were previously identified by microarray analysis and quantitative reverse transcriptase PCR (qRT-PCR). We studied seven genes with male-biased expression, 11 genes with female-biased expression, and one control gene with equal expression in males and females. RNA probes were hybridized to frozen sections of adult worms.

View Article and Find Full Text PDF

To validate the protective efficacy against schistosomiasis by immunization with cells from juvenile Schistosoma japonicum in a murine model and to analyze possible factors related to protection, in this study, two independent repeated vaccination trials were performed. After three subcutaneous vaccinations, in trial one, in the absence of adjuvant, primary juvenile worm cells (pJCs) from S. japonicum induced remarkable average reductions in worm burden (54.

View Article and Find Full Text PDF

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units.

View Article and Find Full Text PDF

Third-stage infective larvae (L3i) of Brugia malayi are developmentally arrested in mosquitoes but must quickly adapt to a new environment when they enter mammalian hosts to initiate infections. These changes can be studied by in vitro culture of L3 (L3c) under conditions that permit molting of L3-L4. Irradiated L3 (L3ir) have stunted growth and limited lifespan in mammalian hosts, and they induce high levels of immunity to challenge infections in animal models.

View Article and Find Full Text PDF

Microarray technology permits high-throughput comparisons of gene expression in different parasite stages or sexes and has been used widely. We report the first use of this technology for analysis of gene expression in filarial male and female worms. The slide array (comprised of 65-mer oligos representing 3569 EST clusters) was spotted with sequences selected from the extensive Brugia malayi EST database ().

View Article and Find Full Text PDF

Improved understanding of the biology of reproduction in filarial worms may lead to identification of new targets for drugs or vaccines. Real-time RT-PCR is increasingly being adopted for RNA quantification and genetic analysis. Candidate gender-regulated genes were selected from genes identified in prior studies by differential display RT-PCR and by electronic selection of the Brugia malayi expression sequence tag (EST) database for clusters with possible gender-specific expression (four or more transcripts in male cDNA library ESTs but none in female ESTs or vice versa).

View Article and Find Full Text PDF

BACKGROUND: DNA vaccination is a convenient means of immunizing animals with recombinant parasite antigens. DNA delivery methods are believed to affect the qualitative nature of immune responses to DNA vaccines in ways that may affect their protective activity. However, relatively few studies have directly compared immune responses to plasmids encoding the same antigens after injection by different routes.

View Article and Find Full Text PDF