Publications by authors named "Ben Wasserman"

Transgenerational plasticity (TGP) occurs when phenotypes are shaped by the environment in both the current and preceding generations. Transgenerational responses to rainfall, CO and temperature suggest that TGP may play an important role in how species cope with climate change. However, little is known about how TGP will evolve as climate change continues.

View Article and Find Full Text PDF

Parallel evolution is considered strong evidence for natural selection. However, few studies have investigated the process of parallel selection as it plays out in real time. The common approach is to study historical signatures of selection in populations already well adapted to different environments.

View Article and Find Full Text PDF

The evolutionary consequences of temporal variation in selection remain hotly debated. We explored these consequences by studying threespine stickleback in a set of bar-built estuaries along the central California coast. In most years, heavy rains induce water flow strong enough to break through isolating sand bars, connecting streams to the ocean.

View Article and Find Full Text PDF

Background: Digital Clock Drawing Test (dCDT) technology enables the examination of detailed neurocognitive behavior as behavior unfolds in real time; a capability that cannot be obtained using a traditional pen and paper testing format.

Objective: Parameters obtained from the dCDT were used to investigate neurocognitive constructs related to higher-order neurocognitive decision making and information processing speed. The current research sought to determine the effect of age as related to combined motor and non-motor components of drawing, and higher-order decision making latencies.

View Article and Find Full Text PDF

Importance: Current hypothetical models emphasize the importance of β-amyloid in Alzheimer disease (AD) pathogenesis, although amyloid alone is not sufficient to account for the dementia syndrome. The impact of small-vessel cerebrovascular disease, visualized as white matter hyperintensities (WMHs) on magnetic resonance imaging scans, may be a key factor that contributes independently to AD presentation.

Objective: To determine the impact of WMHs and Pittsburgh Compound B (PIB) positron-emission tomography-derived amyloid positivity on the clinical expression of AD.

View Article and Find Full Text PDF

We explore a spatially implicit patch-occupancy model of a population on a landscape with continuous-valued heterogeneous habitat quality, primarily considering the case where the habitat quality of a site affects the mortality rate but not the fecundity of individuals at that site. Two analytical approaches to the model are constructed, by summing over the sites in the landscape and by integrating over the range of habitat quality. We obtain results relating the equilibrium population density and all moments of the probability distribution of the habitat quality of occupied sites, and relating the probability distributions of total habitat quality and occupied habitat quality.

View Article and Find Full Text PDF

Few studies have applied multiple imaging modalities to examine cognitive correlates of white matter. We examined the utility of T2-weighted magnetic resonance imaging (MRI) -derived white matter hyperintensities (WMH) and diffusion tensor imaging-derived fractional anisotropy (FA) to predict cognitive functioning among older adults. Quantitative MRI and neuropsychological evaluations were performed in 112 older participants from an ongoing study of the genetics of Alzheimer's disease (AD) in African Americans.

View Article and Find Full Text PDF

The retrogenesis hypothesis postulates that late-myelinated white matter fibers are most vulnerable to age- and disease-related degeneration, which in turn mediate cognitive decline. While recent evidence supports this hypothesis in the context of Alzheimer's disease, it has not been tested systematically in normal cognitive aging. In the current study, we examined the retrogenesis hypothesis in a group (n = 282) of cognitively normal individuals, ranging in age from 7 to 87 years, from the Brain Resource International Database.

View Article and Find Full Text PDF

Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey.

View Article and Find Full Text PDF

The Cdc42p GTPase regulates multiple signal transduction pathways through its interactions with downstream effectors. Specific functional domains within Cdc42p are required for guanine-nucleotide binding, interactions with downstream effectors, and membrane localization. However, little is known about how Cdc42p is clustered at polarized growth sites or is extracted from membranes by Rho guanine-nucleotide dissociation inhibitors (RhoGDIs) at specific times in the cell cycle.

View Article and Find Full Text PDF