Cellular senescence is a phenotype characterized by irreversible growth arrest, chronic elevated secretion of proinflammatory cytokines and matrix proteases, a phenomenon known as senescence-associated secretory phenotype (SASP). Biomarkers of cellular senescence have been shown to increase with age and degeneration of human disc tissue. Senescent disc cells in culture recapitulate features associated with age-related disc degeneration, including increased secretion of proinflammatory cytokines, matrix proteases, and fragmentation of matrix proteins.
View Article and Find Full Text PDFNucleotide excision repair (NER) is a highly conserved genome repair pathway acting on helix distorting DNA lesions. NER is divided into two subpathways: global genome NER (GG-NER), which is responsible for repair throughout genomes, and transcription-coupled NER (TC-NER), which acts on lesions that impede transcription. The extent of the Trypanosoma brucei genome that is transcribed is highly unusual, since most genes are organized in multigene transcription units, each transcribed from a single promoter.
View Article and Find Full Text PDFThe 3rd US-EU Workshop on systems level understanding of DNA damage responses was held from March 30 to April 1, 2009 in Egmond aan Zee, The Netherlands. Objectives of the workshop were (1) to assess the current science of the DDR, in particular network level responses to chemotherapeutic and environmentally induced DNA damage; and (2) to establish the basis for a reciprocal scientific exchange program between the EU and US in the relevant areas of DDR research. Here, we report the highlights of the meeting program and conclude that this third meeting in 2009 refined the role of DDR networks in human disease.
View Article and Find Full Text PDFWe performed experiments to characterize the inducibility of nucleotide excision repair (NER) in Caenorhabditis elegans, and to examine global gene expression in NER-deficient and -proficient strains as well as germline vs. somatic tissues, with and without genotoxic stress. We also carried out experiments to elucidate the importance of NER in the adult life of C.
View Article and Find Full Text PDFSt. John's wort (SJW), an over-the-counter antidepressant, contains hypericin, which absorbs light in the UV and visible ranges. In vivo studies have determined that hypericin is phototoxic to skin and our previous in vitro studies with lens tissues have determined that it is potentially phototoxic to the human lens.
View Article and Find Full Text PDFThe National Center for Toxicogenomics is developing the first public toxicogenomics knowledge base that combines molecular expression data sets from transcriptomics, proteomics, metabonomics, and conventional toxicology with metabolic, toxicologcal pathway, and gene regulatory network information relevant to environmental toxicology and human disease. It is called the Chemical Effects in Biological Systems (CEBS) knowledge base and is designed to meet the information needs of "systems toxicology," involving the study of perturbation by chemicals and stressors, monitoring changes in molecular expression and conventional toxicological parameters, and iteratively integrating biological response data to describe the functioning organism. Based upon functional genomics approaches used successfully in analyzing yeast gene expression data sets, relational and descriptive compendia will be assembled for toxicologically important genes, groups of genes, single nucleotide polymorphisms (SNPs), and mutant and knockout phenotypes.
View Article and Find Full Text PDFNucleotide excision repair (NER) is a crucial pathway in the maintenance of genome stability requiring at least two dozen proteins. XPA and RPA have essential roles in the damage recognition step of NER. To better understand the mechanism of their interactions with DNA, we utilized equilibrium and stop-flow kinetic approaches with fluorescently labeled oligonucleotides.
View Article and Find Full Text PDF