Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes, which play a role in some space-derived health disorders. However, documenting the response of microbiota to spaceflight has been difficult thus far due to mission constraints that lead to limited sampling. Here, we executed a six-month longitudinal study centered on a three-day flight to quantify the high-resolution microbiome response to spaceflight.
View Article and Find Full Text PDFCurr Opin Pharmacol
October 2021
Neurodegenerative diseases (NDDs) encompass a wide range of conditions that arise owing to progressive degeneration and the ultimate loss of nerve cells in the brain and peripheral nervous system. NDDs such as Alzheimer's, Parkinson's, and Huntington's diseases negatively impact both length and quality of life, due to lack of effective disease-modifying treatments. Herein, we review the use of genome-scale metabolic models, network-based approaches, and integration with multiomics data to identify key biological processes that characterize NDDs.
View Article and Find Full Text PDFThe hypothesis that infectious agents, particularly herpesviruses, contribute to Alzheimer's disease (AD) pathogenesis has been investigated for decades but has long engendered controversy. In the past 3 years, several studies in mouse models, human tissue models, and population cohorts have reignited interest in this hypothesis. Collectively, these studies suggest that many of the hallmarks of AD, like amyloid beta production and neuroinflammation, can arise as a protective response to acute infection that becomes maladaptive in the case of chronic infection.
View Article and Find Full Text PDFMicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts.
View Article and Find Full Text PDFGlucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy.
View Article and Find Full Text PDFThe tens of thousands of industrial and synthetic chemicals released into the environment have an unknown but potentially significant capacity to interfere with neurodevelopment. Consequently, there is an urgent need for systematic approaches that can identify disruptive chemicals. Little is known about the impact of environmental chemicals on critical periods of developmental neuroplasticity, in large part, due to the challenge of screening thousands of chemicals.
View Article and Find Full Text PDFThe idea that infectious agents in the brain have a role in the pathogenesis of Alzheimer disease (AD) was proposed nearly 30 years ago. However, this theory failed to gain substantial traction and was largely disregarded by the AD research community for many years. Several recent discoveries have reignited interest in the infectious theory of AD, culminating in a debate on the topic at the Alzheimer's Association International Conference (AAIC) in July 2019.
View Article and Find Full Text PDFTopical glucocorticoids, well-known anti-inflammatory drugs, induce multiple adverse effects, including skin atrophy. The sex-specific effects of systemic glucocorticoids are known, but sexual dimorphism of therapeutic and side effects of topical steroids has not been studied. We report here that female and male mice were equally sensitive to the anti-inflammatory effect of glucocorticoid fluocinolone acetonide (FA) in ear edema test.
View Article and Find Full Text PDFTranscriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we generate a small but significant improvement in the accuracy of transcriptome prediction and increase the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant expression-trait associations that converge on biological processes and relevant phenotypes in human and mouse phenotype databases.
View Article and Find Full Text PDFBackground: Genetic loss-of-function variants (LoFs) associated with disease traits are increasingly recognized as critical evidence for the selection of therapeutic targets. We integrated the analysis of genetic and clinical data from 10,511 individuals in the Mount Sinai BioMe Biobank to identify genes with loss-of-function variants (LoFs) significantly associated with cardiovascular disease (CVD) traits, and used RNA-sequence data of seven metabolic and vascular tissues isolated from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study for validation. We also carried out in vitro functional studies of several candidate genes, and in vivo studies of one gene.
View Article and Find Full Text PDFBackground: Genetic diversity is known to confer survival advantage in many species across the tree of life. Here, we hypothesize that such pattern applies to humans as well and could be a result of higher fitness in individuals with higher genomic heterozygosity.
Results: We use healthy aging as a proxy for better health and fitness, and observe greater heterozygosity in healthy-aged individuals.
Background: Antiretroviral therapy (ART) for HIV infection increases risk for coronary artery disease (CAD), presumably by causing dyslipidemia and increased atherosclerosis. We applied systems pharmacology to identify and validate specific regulatory gene networks through which ART drugs may promote CAD.
Methods: Transcriptional responses of human cell lines to 15 ART drugs retrieved from the Library of Integrated Cellular Signatures (overall 1127 experiments) were used to establish consensus ART gene/transcriptional signatures.
Background: Skin atrophy is a major adverse effect of topical glucocorticoids. We recently reported that REDD1 (regulated in development and DNA damage 1) and FKBP51 (FK506 binding protein 5), negative regulators of mTOR/Akt signaling, are induced by glucocorticoids in mouse and human skin and are central drivers of steroid skin atrophy. Thus, we hypothesized that REDD1/FKBP51 inhibitors could protect skin against catabolic effects of glucocorticoids.
View Article and Find Full Text PDFThis article was originally published under standard licence, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.
View Article and Find Full Text PDFChildhood critical periods of experience-dependent plasticity are essential for the development of environmentally appropriate behavior and cognition. Disruption of critical periods can alter development of normal function and confer risk for neurodevelopmental disorders. While genes and their expression relevant to neurodevelopment are associated with schizophrenia, the molecular relationship between schizophrenia and critical periods has not been assessed systematically.
View Article and Find Full Text PDFFKBP51 (FK506-binding protein 51) is a known co-chaperone and regulator of the glucocorticoid receptor (GR), which usually attenuates its activity. FKBP51 is one of the major GR target genes in skin, but its role in clinical effects of glucocorticoids is not known. Here, we used FKBP51 knockout (KO) mice to determine FKBP51's role in the major adverse effect of topical glucocorticoids, skin atrophy.
View Article and Find Full Text PDFIntegrative gene network approaches enable new avenues of exploration that implicate causal genes in sporadic late-onset Alzheimer's disease (LOAD) pathogenesis, thereby offering novel insights for drug-discovery programs. We previously constructed a probabilistic causal network model of sporadic LOAD and identified TYROBP/DAP12, encoding a microglial transmembrane signaling polypeptide and direct adapter of TREM2, as the most robust key driver gene in the network. Here, we show that absence of TYROBP/DAP12 in a mouse model of AD-type cerebral Aβ amyloidosis (APP/PSEN1) recapitulates the expected network characteristics by normalizing the transcriptome of APP/PSEN1 mice and repressing the induction of genes involved in the switch from homeostatic microglia to disease-associated microglia (DAM), including Trem2, complement (C1qa, C1qb, C1qc, and Itgax), Clec7a and Cst7.
View Article and Find Full Text PDFBackground: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals within 30 days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the rates of early readmission, a negative clinical outcome (i.e.
View Article and Find Full Text PDFInvestigators have long suspected that pathogenic microbes might contribute to the onset and progression of Alzheimer's disease (AD) although definitive evidence has not been presented. Whether such findings represent a causal contribution, or reflect opportunistic passengers of neurodegeneration, is also difficult to resolve. We constructed multiscale networks of the late-onset AD-associated virome, integrating genomic, transcriptomic, proteomic, and histopathological data across four brain regions from human post-mortem tissue.
View Article and Find Full Text PDFCurrently, drug discovery approaches focus on the design of therapies that alleviate an index symptom by reengineering the underlying biological mechanism in agonistic or antagonistic fashion. For example, medicines are routinely developed to target an essential gene that drives the disease mechanism. Therapeutic overloading where patients get multiple medications to reduce the primary and secondary side effect burden is standard practice.
View Article and Find Full Text PDFGlucocorticoids have excellent therapeutic properties; however, they cause significant adverse atrophogenic effects. The mTORC1 inhibitor REDD1 has been recently identified as a key mediator of glucocorticoid-induced atrophy. We performed computational screening of a connectivity map database to identify putative REDD1 inhibitors.
View Article and Find Full Text PDFDYT1 dystonia is a neurological disease caused by dominant mutations in the TOR1A gene, encoding for the endoplasmic reticulum (ER)-resident protein torsinA. Recent reports linked expression of the DYT1-causing protein with dysregulation of eIF2α, a key component of the cellular response to ER stress known as the unfolded protein response (UPR). However, the response of the DYT1 mammalian brain to acute ER stress inducers has not been evaluated in vivo.
View Article and Find Full Text PDF