. Gait assessments have traditionally been analysed in laboratory settings, but this may not reflect natural gait. Wearable technology may offer an alternative due to its versatility.
View Article and Find Full Text PDFThis study investigated the effects of dynamic knee extension and flexion fatiguing task on torque and neuromuscular responses in young and older individuals. Eighteen young (8 males; 25.1 ± 3.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Gait analysis has many potential applications in understanding the activity profiles of individuals in their daily lives, particularly when studying the progression of recovery following injury, or motor deterioration in pathological conditions. One of the many challenges of conducting such analyses in the home environment is the correct and automatic identification of bouts of gait activity. To address this, a novel method for determining bouts of gait from accelerometer data recorded from the shank is presented.
View Article and Find Full Text PDFBackground: LSVT-BIG® is an intensively delivered, amplitude-oriented exercise therapy reported to improve mobility in individuals with Parkinson's disease (PD). However, questions remain surrounding the efficacy of LSVT-BIG® when compared with similar exercise therapies. Instrumented clinical tests using body-worn sensors can provide a means to objectively monitor patient progression with therapy by quantifying features of motor function, yet research exploring the feasibility of this approach has been limited to date.
View Article and Find Full Text PDFThe Teager-Kaiser energy operator (TKEO), when applied to a signal gives an estimation of the instantaneous energy of that signal. It, therefore, accentuates both frequency and amplitude changes in a signal. To date, it has been primarily used in communications systems and most popularly in electromyographic signal analysis to detect bursts of muscle activity, however, it has the potential to be used in a number of applications including accelerometer and movement data.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
March 2020
Objective: A novel method based on the application of the Teager-Kaiser Energy Operator is presented to estimate instances of initial contact (IC) and final contact (FC) from accelerometry during gait. The performance of the proposed method was evaluated against four existing gait event detection (GED) methods under three walking conditions designed to capture the variance of gait in real-world environments.
Methods: A symmetric discrete approximation of the Teager-Kaiser energy operator was used to capture simultaneous amplitude and frequency modulations of the shank acceleration signal at IC and FC during flat treadmill walking, inclined treadmill walking, and flat indoor walking.