Publications by authors named "Ben Martynoga"

Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons.

View Article and Find Full Text PDF

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks.

View Article and Find Full Text PDF

Mutations in NIPBL are the most frequent cause of Cornelia de Lange syndrome (CdLS), a developmental disorder encompassing several neurological defects, including intellectual disability and seizures. How NIPBL mutations affect brain development is not understood. Here we identify Nipbl as a functional interaction partner of the neural transcription factor Zfp609 in brain development.

View Article and Find Full Text PDF

Embryonic stem cell (ESC) identity is orchestrated by co-operativity between the transcription factors (TFs) Sox2 and the class V POU-TF Oct4 at composite Sox/Oct motifs. Neural stem cells (NSCs) lack Oct4 but express Sox2 and class III POU-TFs Oct6, Brn1 and Brn2. This raises the question of how Sox2 interacts with POU-TFs to transcriptionally specify ESCs versus NSCs.

View Article and Find Full Text PDF

Murine postnatal neural stem cells (NSCs) give rise to neurons, astrocytes, or oligodendrocytes (OLs); however, our knowledge of the genes that control this lineage specification is incomplete. In this study, we show that nuclear factor I X (NFIX), a transcription factor known to regulate NSC quiescence, also suppresses oligodendrogenesis (ODG) from NSCs. Immunostaining reveals little or no expression of NFIX in OL lineage cells both in vivo and in vitro.

View Article and Find Full Text PDF

Transcription factors of the nuclear factor one (NFI) family play a pivotal role in the development of the nervous system. One member, NFIX, regulates the development of the neocortex, hippocampus, and cerebellum. Postnatal Nfix(-/-) mice also display abnormalities within the subventricular zone (SVZ) lining the lateral ventricles, a region of the brain comprising a neurogenic niche that provides ongoing neurogenesis throughout life.

View Article and Find Full Text PDF

The gene regulatory network (GRN) that supports neural stem cell (NS cell) self-renewal has so far been poorly characterized. Knowledge of the central transcription factors (TFs), the noncoding gene regulatory regions that they bind to, and the genes whose expression they modulate will be crucial in unlocking the full therapeutic potential of these cells. Here, we use DNase-seq in combination with analysis of histone modifications to identify multiple classes of epigenetically and functionally distinct cis-regulatory elements (CREs).

View Article and Find Full Text PDF

The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence.

View Article and Find Full Text PDF

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts.

View Article and Find Full Text PDF

The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells.

View Article and Find Full Text PDF

FOXO transcription factors are central regulators of longevity from worms to humans. FOXO3, the FOXO isoform associated with exceptional human longevity, preserves adult neural stem cell pools. Here, we identify FOXO3 direct targets genome-wide in primary cultures of adult neural progenitor cells (NPCs).

View Article and Find Full Text PDF

We aimed to identify cis-regulatory elements that control gene expression in progenitors of the cerebral cortex. A list of 975 putative enhancers were retrieved from a ChIP-Seq experiment performed in NS5 mouse stem cells with antibodies to Sox2, Brn2/Pou3f2, or Brn1/Pou3f3. Through a selection pipeline including gene ontology and expression pattern, we reduced the number of candidate enhancer sequences to 20.

View Article and Find Full Text PDF

The mammalian nervous system is the most complex organ of any living organism. How this complexity is generated during neural development is just beginning to be elucidated. This article discusses the signaling, transcriptional, and epigenetic mechanisms that are involved in neural development.

View Article and Find Full Text PDF

A crucial event in the birth of a neuron is the detachment of its apical process from the neuroepithelium. In this issue of Neuron, Rousso et al. (2012) show that repression of N-cadherin by Foxp transcription factors disrupts apical adherens junctions and triggers neurogenesis.

View Article and Find Full Text PDF

Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1.

View Article and Find Full Text PDF

Background: The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins) in the telencephalon of Foxg1 null mutants.

View Article and Find Full Text PDF

Neural stem (NS) cells are a self-renewing population of symmetrically dividing multipotent radial glia-like stem cells, characterized by homogeneous expansion in monolayer. Here we report that fetal NS cells isolated from different regions of the developing mouse nervous system behave in a similar manner with respect to self-renewal and neuropotency, but exhibit distinct positional identities. For example, NS cells from the neocortex maintain the expression of anterior transcription factors, including Otx2 and Foxg1, while Hoxb4 and Hoxb9 are uniquely found in spinal cord-derived NS cells.

View Article and Find Full Text PDF

Foxg1 is required for development of the ventral telencephalon in the embryonic mammalian forebrain. Although one existing hypothesis suggests that failed ventral telencephalic development in the absence of Foxg1 is due to reduced production of the morphogens sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8), the possibility that telencephalic cells lacking Foxg1 are intrinsically incompetent to generate the ventral telencephalon has remained untested. We examined the ability of Foxg1(-/-) telencephalic cells to respond to Shh and Fgf8 by examining the expression of genes whose activation requires Shh or Fgf8 in vivo and by testing their responses to Shh and Fgf8 in culture.

View Article and Find Full Text PDF

The earliest step in creating the cerebral cortex is the specification of neuroepithelium to a cortical fate. Using mouse genetic mosaics and timed inactivations, we demonstrated that Lhx2 acts as a classic selector gene and essential intrinsic determinant of cortical identity. Lhx2 selector activity is restricted to an early critical period when stem cells comprise the cortical neuroepithelium, where it acts cell-autonomously to specify cortical identity and suppress alternative fates in a spatially dependent manner.

View Article and Find Full Text PDF

Levels of expression of the transcription factor Pax6 vary throughout corticogenesis in a rostro-lateral(high) to caudo-medial(low) gradient across the cortical proliferative zone. Previous loss-of-function studies have indicated that Pax6 is required for normal cortical progenitor proliferation, neuronal differentiation, cortical lamination and cortical arealization, but whether and how its level of expression affects its function is unclear. We studied the developing cortex of PAX77 YAC transgenic mice carrying several copies of the human PAX6 locus with its full complement of regulatory regions.

View Article and Find Full Text PDF

Many cerebral cortical neurons and glia are produced by apical progenitors dividing at the ventricular surface of the embryonic dorsal telencephalon. Other neurons are produced by basal progenitor cells, which are derived from apical progenitors, dividing away from the ventricular surface. The transcription factor Pax6 is expressed in apical progenitors and is downregulated in basal progenitors, which upregulate the transcription factor Tbr2.

View Article and Find Full Text PDF

The transcription factor Gli3 is important for brain and limb development. Mice homozygous for a mutation in Gli3 (Gli3Xt/Xt) have severe abnormalities of telencephalic development and previous studies have suggested that aberrant cell death may contribute to the Gli3Xt/Xt phenotype. We demonstrate that telencephalic cells from embryonic Gli3Xt/Xt embryos survive better and are more resistant to death induced by cytosine arabinoside, a nucleoside analogue that induces death in neuronal progenitors and neurons, than are control counterparts in vitro.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqf7ne1k1rl61oljmu3gp6vo3q32rvelj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once