Publications by authors named "Ben M Harvey"

Many sensory brain areas are organized as topographic maps where neural response preferences change gradually across the cortical surface. Within association cortices, 7-Tesla fMRI and neural model-based analyses have also revealed many topographic maps for quantities like numerosity and event timing, often in similar locations. Numerical and temporal quantity estimations also show behavioral similarities and even interactions.

View Article and Find Full Text PDF

Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. Tuned neural responses to visual event timing have been found in association cortices, in areas implicated in these processes. Here we ask how these timing-tuned responses are related to the responses of early visual cortex, which monotonically increase with event duration and frequency.

View Article and Find Full Text PDF

Numerosity, the set size of a group of items, helps guide behavior and decisions. Previous studies have shown that neural populations respond selectively to numerosities. How numerosity is extracted from the visual scene is a longstanding debate, often contrasting low-level visual with high-level cognitive processes.

View Article and Find Full Text PDF

Perception of sub-second auditory event timing supports multisensory integration, and speech and music perception and production. Neural populations tuned for the timing (duration and rate) of visual events were recently described in several human extrastriate visual areas. Here we ask whether the brain also contains neural populations tuned for auditory event timing, and whether these are shared with visual timing.

View Article and Find Full Text PDF

Human early visual cortex response amplitudes monotonically increase with numerosity (object number), regardless of object size and spacing. However, numerosity is typically considered a high-level visual or cognitive feature, while early visual responses follow image contrast in the spatial frequency domain. We find that, at fixed contrast, aggregate Fourier power (at all orientations and spatial frequencies) follows numerosity closely but nonlinearly with little effect of object size, spacing or shape.

View Article and Find Full Text PDF

Perception of quantities, such as numerosity, timing, and size, is essential for behavior and cognition. Accumulating evidence demonstrates neurons processing quantities are tuned, that is, have a preferred quantity amount, not only for numerosity, but also other quantity dimensions and sensory modalities. We argue that quantity-tuned neurons are fundamental to understanding quantity perception.

View Article and Find Full Text PDF

Healthy human aging is associated with a deterioration of visual acuity, retinal thinning, visual field map shrinkage and increasing population receptive field sizes. Here we ask how these changes are related to each other in a cross-sectional sample of fifty healthy adults aged 20-80 years. We hypothesized that age-related loss of macular retinal ganglion cells may lead to decreased visual field map sizes, and both may lead to increased pRF sizes in the cortical central visual field representation.

View Article and Find Full Text PDF

Numerosity, the set size of a group of items, helps guide behaviour and decisions. Non-symbolic numerosities are represented by the approximate number system. However, distinct behavioural performance suggests that small numerosities, i.

View Article and Find Full Text PDF

Humans and animals rely on accurate object size perception to guide behavior. Object size is judged from visual input, but the relationship between an object's retinal size and its real-world size varies with distance. Humans perceive object sizes to be relatively constant when retinal size changes.

View Article and Find Full Text PDF

Perceiving numerosity, i.e. the set size of a group of items, is an evolutionarily preserved ability found in humans and animals.

View Article and Find Full Text PDF

Dedicated maps for cognitive quantities such as timing, size and numerosity support the view that topography is a general principle of brain organization. To date, however, all of these maps were driven by the visual system. Here, we ask whether there are supramodal topographic maps representing cognitive dimensions irrespective of the stimulated sensory modality.

View Article and Find Full Text PDF

It has recently been shown that large-scale propagation of blood-oxygen-level-dependent (BOLD) activity is constrained by anatomical connections and reflects transitions between behavioral states. It remains to be seen, however, if the propagation of BOLD activity can also relate to the brain's anatomical structure at a more local scale. Here, we hypothesized that BOLD propagation reflects structured neuronal activity across early visual field maps.

View Article and Find Full Text PDF

Accurately timing sub-second sensory events is crucial when perceiving our dynamic world. This ability allows complex human behaviors that require timing-dependent multisensory integration and action planning. Such behaviors include perception and performance of speech, music, driving, and many sports.

View Article and Find Full Text PDF

Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression.

View Article and Find Full Text PDF

Purpose: To investigate the relation between optical properties, population receptive fields (pRFs), visual function, and subjectively perceived quality of vision after cataract surgery.

Methods: The study includes 30 patients who had recently undergone bilateral sequential cataract surgery. We used functional magnetic resonance imaging and pRF modelling methods to assess pRF sizes across visual cortical regions (V1-V3).

View Article and Find Full Text PDF

Here we took several stimulus configurations that have the same numerosity progression but vary considerably in their non-numerical visual features. We collected responses to these stimuli using ultra-high-field (7T) fMRI in a posterior parietal area that responds to changes in these stimuli. We first quantify the relationships between numerosity and several non-numerical visual features in each stimulus configuration.

View Article and Find Full Text PDF

Human visual cortex does not represent the whole visual field with the same detail. Changes in receptive field size, population receptive field (pRF) size and cortical magnification factor (CMF) with eccentricity are well established, and associated with changes in visual acuity with eccentricity. Visual acuity also changes across polar angle.

View Article and Find Full Text PDF

A goal of computational models is not only to explain experimental data but also to make new predictions. A current focus of computational neuroimaging is to predict features of the presented stimulus from measured brain signals. These computational neuroimaging approaches may be agnostic about the underlying neural processes or may be biologically inspired.

View Article and Find Full Text PDF

Resting-state fMRI is widely used to study brain function and connectivity. However, interpreting patterns of resting state (RS) fMRI activity remains challenging as they may arise from different neuronal mechanisms than those triggered by exogenous events. Currently, this limits the use of RS-fMRI for understanding cortical function in health and disease.

View Article and Find Full Text PDF

Quantity processing studies typically assume functional homology between regions within macaque and human intraparietal sulcus (IPS), where apparently similar locations respond to broadly similar tasks. However, macaque single cell neurophysiology is difficult to compare to human functional magnetic resonance imaging (fMRI); particularly in multivoxel pattern analysis and adaptation paradigms, or where different tasks are used. fMRI approaches incorporating neural tuning models allow closer comparison, revealing human numerosity-selective responses only outside the IPS.

View Article and Find Full Text PDF

Visual cortex contains a hierarchy of visual areas. The earliest cortical area (V1) contains neurons responding to colour, form and motion. Later areas specialize on processing of specific features.

View Article and Find Full Text PDF

Changes in brain neuronal activity are reflected by hemodynamic responses mapped through Blood Oxygenation Level Dependent (BOLD) functional magnetic resonance imaging (fMRI), a primary tool to measure brain functioning non-invasively. However, the exact relationship between hemodynamics and neuronal function is still a matter of debate. Here, we combine 3T BOLD fMRI and High Frequency Band (HFB) electrocorticography (ECoG) signals to investigate the relationship between neuronal activity and hemodynamic responses in the human Middle Temporal complex (hMT+), a higher order brain area involved in visual motion processing.

View Article and Find Full Text PDF

Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity. However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and visual features often co-vary with numerosity.

View Article and Find Full Text PDF

The human middle temporal complex (hMT+) has a crucial biological relevance for the processing and detection of direction and speed of motion in visual stimuli. Here, we characterized how neuronal populations in hMT+ encode the speed of moving visual stimuli. We evaluated human intracranial electrocorticography (ECoG) responses elicited by square-wave dartboard moving stimuli with different spatial and temporal frequency to investigate whether hMT+ neuronal populations encode the stimulus speed directly, or whether they separate motion into its spatial and temporal components.

View Article and Find Full Text PDF

Physical quantities differ from abstract numbers and mathematics, but recent results are revealing the neural representation of both: a new study demonstrates how an absence of quantity is transformed into a representation of zero as a number.

View Article and Find Full Text PDF