Publications by authors named "Ben Long"

Organoids can recapitulate human-specific phenotypes and functions in vivo and have great potential for research in development, disease modeling, and drug screening. Due to the inherent variability among organoids, experiments often require a large sample size. Embedding, staining, and imaging each organoid individually require a lot of reagents and time.

View Article and Find Full Text PDF

Dissection of the anatomical information at the single-cell level is crucial for understanding the organization rule and pathological mechanism of biological tissues. Mapping the whole organ in numerous groups with multiple conditions brings the challenges in imaging and analysis. Here, we describe an approach, named array fluorescent micro-optical sectioning tomography (array-fMOST), to identify the three-dimensional information at single-cell resolution from multi-samples.

View Article and Find Full Text PDF

Cerebral organoids recapitulate in vivo phenotypes and physiological functions of the brain and have great potential in studying brain development, modeling diseases, and conducting neural network research. It is essential to obtain whole-mount three-dimensional (3D) images of cerebral organoids at cellular levels to explore their characteristics and applications. Existing histological strategies sacrifice inherent spatial characteristics of organoids, and the strategy for volume imaging and 3D analysis of entire organoids is urgently needed.

View Article and Find Full Text PDF

Background: Neurotropic virus infection can cause serious damage to the central nervous system (CNS) in both humans and animals. The complexity of the CNS poses unique challenges to investigate the infection of these viruses in the brain using traditional techniques.

Methods: In this study, we explore the use of fluorescence micro-optical sectioning tomography (fMOST) and single-cell RNA sequencing (scRNA-seq) to map the spatial and cellular distribution of a representative neurotropic virus, rabies virus (RABV), in the whole brain.

View Article and Find Full Text PDF

The brain modulates specific functions in its various regions. Understanding the organization of different cells in the whole brain is crucial for investigating brain functions. Previous studies have focused on several regions and have had difficulty analyzing serial tissue samples.

View Article and Find Full Text PDF

Background: Unraveling how new coronary arteries develop may provide critical information for establishing novel therapeutic approaches to treating ischemic cardiac diseases. There are 2 distinct coronary vascular populations derived from different origins in the developing heart. Understanding the formation of coronary arteries may provide insights into new ways of promoting coronary artery formation after myocardial infarction.

View Article and Find Full Text PDF

Early recognition of underlying thyroid disease in patients presenting with new-onset tachyarrhythmia is central to management, as usual rate-control strategies can result in significant mortality and morbidity. Hyperthyroidism-induced cardiomyopathy complicated by cardiogenic shock is a life-threatening condition. Thyroid storm can lead to irreversible cardiovascular collapse and death if proper treatment is not initiated as soon as possible.

View Article and Find Full Text PDF

Axonopathy is a pathological feature observed in both Alzheimer's disease (AD) patients and animal models. However, identifying the temporal and regional progression of axonopathy during AD development remains elusive. Using the fluorescence micro-optical sectioning tomography system, we acquired whole-brain datasets in the early stage of 5xFAD/Thy1-GFP-M mice.

View Article and Find Full Text PDF

Mapping the cytoarchitecture of the whole brain can reveal the organizational logic of neural systems. However, this remains a significant challenge, especially for gyrencephalic brains with a large volume. Here we propose an integrated pipeline for generating a cytoarchitectonic atlas with single-cell resolution of the whole brain.

View Article and Find Full Text PDF

The combination of optical clearing with light microscopy has a number of applications in the whole-brain imaging of mice. However, the initial processing time of optical clearing is time consuming, and the protocol is complicated. We propose a novel method based on on-line optical clearing.

View Article and Find Full Text PDF

Understanding amazingly complex brain functions and pathologies requires a complete cerebral vascular atlas in stereotaxic coordinates. Making a precise atlas for cerebral arteries and veins has been a century-old objective in neuroscience and neuropathology. Using micro-optical sectioning tomography (MOST) with a modified Nissl staining method, we acquired five mouse brain data sets containing arteries, veins, and microvessels.

View Article and Find Full Text PDF

A neural circuit is a structural-functional unit of achieving particular information transmission and processing, and have various inputs, outputs and molecular phenotypes. Systematic acquisition and comparative analysis of the molecular features of neural circuits are crucial to elucidating the operating mechanisms of brain function. However, no efficient, systematic approach is available for describing the molecular phenotypes of specific neural circuits at the whole brain scale.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH), with widespread expression in the brain, plays a key role in modulating a series of behaviors, including anxiety, arousal, motor function, learning and memory. Previous studies have focused on some brain regions with densely distributed CRH neurons such as paraventricular hypothalamic nucleus (PVH) and bed nuclei of the stria terminalis (BST) and revealed some basic structural and functional knowledge of CRH neurons. However, there is no systematic analysis of brain-wide distribution of CRH neurons.

View Article and Find Full Text PDF

Objective: Vital sign trends are used in clinical practice to assess treatment response and aid in disposition, yet quantitative data to support this practice are lacking. This study aimed to determine the prognostic value of vital sign normalization.

Methods: Secondary analysis of a prospective cohort of adult emergency department (ED) patients admitted a single urban tertiary care hospital.

View Article and Find Full Text PDF

Alzheimer's disease is a representative age-related neurodegenerative disease that could result in loss of memory and cognitive deficiency. However, the precise onset time of Alzheimer's disease affecting neuronal circuits and the mechanisms underlying the changes are not clearly known. To address the neuroanatomical changes during the early pathologic developing process, we acquired the neuronal morphological characterization of AD in APP/PS1 double-transgenic mice using the Micro-Optical Sectioning Tomography system.

View Article and Find Full Text PDF

The study of this study is to assess the current status and trend of the application of breast reconstruction in China.A retrospective review of all patients who had received surgical treatment for breast cancer in the Fudan University Shanghai Cancer Center between January 1999 and June 2014 was performed. The clinicopathological and epidemiological parameters and the follow-up information of each patient were collected.

View Article and Find Full Text PDF

Recent advances in computational hardware, software and algorithms enable simulations of protein-ligand complexes to achieve timescales during which complete ligand binding and unbinding pathways can be observed. While observation of such events can promote understanding of binding and unbinding pathways, it does not alone provide information about the molecular drivers for protein-ligand association, nor guidance on how a ligand could be optimised to better bind to the protein. We have developed the waterswap (C.

View Article and Find Full Text PDF

The emergence of a novel H7N9 avian influenza that infects humans is a serious cause for concern. Of the genome sequences of H7N9 neuraminidase available, one contains a substitution of arginine to lysine at position 292, suggesting a potential for reduced drug binding efficacy. We have performed molecular dynamics simulations of oseltamivir, zanamivir and peramivir bound to H7N9, H7N9-R292K, and a structurally related H11N9 neuraminidase.

View Article and Find Full Text PDF

Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized to provide elevated CO(2) concentrations around the primary CO(2)-fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). In cyanobacteria, Rubisco is encapsulated in unique micro-compartments known as carboxysomes.

View Article and Find Full Text PDF

Cyanobacteria probably exhibit the widest range of diversity in growth habitats of all photosynthetic organisms. They are found in cold and hot, alkaline and acidic, marine, freshwater, saline, terrestrial, and symbiotic environments. In addition to this, they originated on earth at least 2.

View Article and Find Full Text PDF