Publications by authors named "Ben Kravitz"

Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021.

View Article and Find Full Text PDF

Three Coupled Model Intercomparison Project 5 (CMIP5) models that simulated the G4 experiment of the Geoengineering Model Intercomparison Project (GeoMIP) were used to investigate the impact of stratospheric aerosol injection (SAI) on combined temperature and precipitation extremes in Africa that can have greater negative impacts on human and the environment than individual rainfall or temperature extremes. The examined compound extremes included the dry (R and R) and wet (R and R) modes assessed during the injection (SAI, 2050-2069) and post-injection (postSAI, 2070-2089) periods compared with the historical period (1986-2005). We found a significant projected change in the occurrence of both wet and dry modes during SAI and postSAI related to the historical period.

View Article and Find Full Text PDF

The response of the Indian Summer Monsoon (ISM) to global warming, solar geoengineering and its termination is examined using the multi-model mean of seven global climate model simulations from G2 experiment of the Geoengineering Model Intercomparison Project. Under the global warming scenario, land-ocean temperature contrasts and low-level monsoon circulation progressively strengthen accompanied by enhanced precipitation over the Indian subcontinent. Notably, in the solar geoengineered scenario, marginal surface cooling is projected over the majority of the ISM region, and there is strengthening of both upper and lower level circulation.

View Article and Find Full Text PDF

Earth System Models (ESMs) are excellent tools for quantifying many aspects of future climate dynamics but are too computationally expensive to produce large collections of scenarios for downstream users of ESM data. In particular, many researchers focused on the impacts of climate change require large collections of ESM runs to rigorously study the impacts to both human and natural systems of low-frequency high-importance events, such as multi-year droughts. Climate model emulators provide an effective mechanism for filling this gap, reproducing many aspects of ESMs rapidly but with lower precision.

View Article and Find Full Text PDF

The last decade has seen broad exploratory research into stratospheric aerosol (SA) geoengineering, motivated by concern that reducing greenhouse gas emissions may be insufficient to avoid significant impacts from climate change. Based on this research, it is plausible that a limited deployment of SA geoengineering, provided it is used in addition to cutting emissions, could reduce many climate risks for most people. However, "plausible" is an insufficient basis on which to support future decisions.

View Article and Find Full Text PDF

Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes.

View Article and Find Full Text PDF

Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming.

View Article and Find Full Text PDF

A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo.

View Article and Find Full Text PDF