Publications by authors named "Ben J Tolley"

C(4) photosynthesis has evolved in at least 66 lineages within the angiosperms and involves alterations to the biochemistry, cell biology, and development of leaves. The characteristic "Kranz" anatomy of most C(4) leaves was discovered in the 1890s, but the genetic basis of these traits remains poorly defined. Oat × maize addition lines allow the effects of individual maize (Zea mays; C(4)) chromosomes to be investigated in an oat (Avena sativa; C(3)) genetic background.

View Article and Find Full Text PDF

The molecular mechanisms governing PEPC expression in maize remain to be fully defined. Differential methylation of a region in the PEPC promoter has been shown to correlate with transcript accumulation, however, to date, investigations into the role of DNA methylation in maize PEPC expression have relied on the use of methylation-sensitive restriction enzymes. Bisulphite sequencing was used here to provide a single-base resolution methylation map of the maize PEPC promoter.

View Article and Find Full Text PDF

Every day almost one billion people suffer from chronic hunger, and the situation is expected to deteriorate with a projected population growth to 9 billion worldwide by 2050. In order to provide adequate nutrition into the future, rice yields in Asia need to increase by 60%, a change that may be achieved by introduction of the C(4) photosynthetic cycle into rice. The international C(4) Rice Consortium was founded in order to test the feasibility of installing the C(4) engine into rice.

View Article and Find Full Text PDF