Publications by authors named "Ben J Hatchwell"

When two or more individuals cooperate to provision a shared brood, each carer may be able to maximize their payoffs by coordinating provisioning in relation to what others are doing. This investment "game" is not simply a matter of how much to invest but also of the relative timing of investment. Recent studies propose that temporal coordination of care in the forms of alternation (i.

View Article and Find Full Text PDF

Understanding storm impacts on marine vertebrate demography requires detailed meteorological data in tandem with long-term population monitoring. Yet most studies use storm proxies such as the North Atlantic Oscillation Index (NAOI), potentially obfuscating a mechanistic understanding of current and future risk. Here, we investigate the impact of extratropical cyclones by extracting north Atlantic winter storm characteristics (storm number, intensity, clustering and wave conditions) and relating these with long-term overwinter adult survival of three long-lived sympatric seabirds which winter at sea-common guillemot Uria aalge, Atlantic puffin Fratercula arctica and razorbill Alca torda.

View Article and Find Full Text PDF

Long-lived monogamous species gain long-term fitness benefits by equalizing effort during biparental care. For example, many seabird species coordinate care by matching foraging trip durations within pairs. Age affects coordination in some seabird species; however, the impact of other intrinsic traits, including personality, on potential intraspecific variation in coordination strength is less well understood.

View Article and Find Full Text PDF

Alloparental care in cooperatively breeding species may alter breeder age-specific survival and reproduction and subsequently senescence. The helping behaviour itself might also undergo age-related change, and decisions to help in facultative cooperative breeders are likely to be affected by individual condition. Helpers in long-tailed tits Aegithalos caudatus assist relatives after failing to raise their own brood, with offspring from helped nests being more likely to recruit into the breeding population.

View Article and Find Full Text PDF

The genetic structure of animal populations has considerable behavioural, ecological and evolutionary implications and may arise from various demographic traits. Here, we use observational field data and molecular genetics to determine the genetic structure of an invasive population of monk parakeets, Myiopsitta monachus, at a range of spatial scales, and investigate the demographic processes that generate the observed structure. Monk parakeets construct large nests that can house several pairs occupying separate chambers; these nests are often aggregated within nesting trees.

View Article and Find Full Text PDF

Home ranging is a near-ubiquitous phenomenon in the animal kingdom. Understanding the behavioural mechanisms that give rise to observed home range patterns is thus an important general question, and mechanistic home range analysis (MHRA) provides the tools to address it. However, such analysis has hitherto been principally restricted to scent-marking territorial animals, so its potential breadth of application has not been tested.

View Article and Find Full Text PDF

Inbreeding is often avoided in natural populations by passive processes such as sex-biased dispersal. But, in many social animals, opposite-sexed adult relatives are spatially clustered, generating a risk of incest and hence selection for active inbreeding avoidance. Here we show that, in long-tailed tits (), a cooperative breeder that risks inbreeding by living alongside opposite-sex relatives, inbreeding carries fitness costs and is avoided by active kin discrimination during mate choice.

View Article and Find Full Text PDF

Most cooperative breeders live in discrete family groups, but in a minority, breeding populations comprise extended social networks of conspecifics that vary in relatedness. Selection for effective kin recognition may be expected for more related individuals in such kin neighbourhoods to maximize indirect fitness. Using a long-term social pedigree, molecular genetics, field observations and acoustic analyses, we examine how vocal similarity affects helping decisions in the long-tailed tit .

View Article and Find Full Text PDF

Invasive species can have wide-ranging negative impacts, and an understanding of the process and success of invasions can be vital to determine management strategies, mitigate impacts and predict range expansions of such species. Monk parakeets (Myiopsitta monachus) and ring-necked parakeets (Psittacula krameri) are both widespread invasive species, but there has been little research into the genetic and social structure of these two species despite the potential links with invasion success. The aim of this study was to isolate novel microsatellite loci from the monk parakeet and characterise them in both monk and ring-necked parakeets in order to facilitate future investigations into their behaviour and population ecology.

View Article and Find Full Text PDF

Natal dispersal is a demographic trait with profound evolutionary, ecological, and behavioral consequences. However, our understanding of the adaptive value of dispersal patterns is severely hampered by the difficulty of measuring the relative fitness consequences of alternative dispersal strategies in natural populations. This is especially true in social species, in which natal philopatry allows kin selection to operate, so direct and indirect components of inclusive fitness have to be considered when evaluating selection on dispersal.

View Article and Find Full Text PDF

Evolutionary theory predicts that parents should invest equally in the two sexes. If one sex is more costly, a production bias is predicted in favour of the other. Two well-studied causes of differential costs are size dimorphism, in which the larger sex should be more costly, and sex-biased helping in cooperative breeders, in which the more helpful sex should be less costly because future helping "repays" some of its parents' investment.

View Article and Find Full Text PDF

In animal societies, characteristic demographic and dispersal patterns may lead to genetic structuring of populations, generating the potential for kin selection to operate. However, even in genetically structured populations, social interactions may still require kin discrimination for cooperative behaviour to be directed towards relatives. Here, we use molecular genetics and long-term field data to investigate genetic structure in an adult population of long-tailed tits Aegithalos caudatus, a cooperative breeder in which helping occurs within extended kin networks, and relate this to patterns of helping with respect to kinship.

View Article and Find Full Text PDF

The repayment hypothesis predicts that reproductive females in cooperative breeding systems overproduce the helping sex. Thanks to well-documented examples of this predicted sex ratio bias, repayment has been considered an important driver of variation in sex allocation patterns. Here we test this hypothesis using data on population brood sex ratios and facultative sex allocation from 28 cooperatively breeding bird species.

View Article and Find Full Text PDF

Indirect fitness benefits gained through kin-selected helping are widely invoked to explain the evolution of cooperative breeding behavior in birds. However, the impact of helpers on productivity of helped broods can be difficult to determine if the effects are confounded by territory quality or if the benefit of helpers is apparent only in the long term. In riflemen , helping and group membership are effectively decoupled as adult helpers are individuals that have dispersed from their natal territory and live independently from breeders in "kin neighborhoods.

View Article and Find Full Text PDF

Investment by helpers in cooperative breeding systems is extremely variable among species, but this variation is currently unexplained. Inclusive fitness theory predicts that, all else being equal, cooperative investment should correlate positively with the relatedness of helpers to the recipients of their care. We test this prediction in a comparative analysis of helper investment in 36 cooperatively breeding bird species.

View Article and Find Full Text PDF

There is large interspecific variation in the magnitude of population fluctuations, even among closely related species. The factors generating this variation are not well understood, primarily because of the challenges of separating the relative impact of variation in population size from fluctuations in the environment. Here, we show using demographic data from 13 bird populations that magnitudes of fluctuations in population size are mainly driven by stochastic fluctuations in the environment.

View Article and Find Full Text PDF

Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin-structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long-term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests.

View Article and Find Full Text PDF

Phenotypes expressed in a social context are not only a function of the individual, but can also be shaped by the phenotypes of social partners. These social effects may play a major role in the evolution of cooperative breeding if social partners differ in the quality of care they provide and if individual carers adjust their effort in relation to that of other carers. When applying social effects models to wild study systems, it is also important to explore sources of individual plasticity that could masquerade as social effects.

View Article and Find Full Text PDF

1. Cooperatively breeding species are typically long lived and hence, according to theory, are expected to maximize their lifetime reproductive success through maximizing survival. Under these circumstances, the presence of helpers could be used to lighten the effort of current reproduction for parents to achieve higher survival.

View Article and Find Full Text PDF

The tragedy of the commons predicts social collapse when public goods are jointly exploited by individuals attempting to maximize their fitness at the expense of other social group members. However, animal societies have evolved many times despite this vulnerability to exploitation by selfish individuals. Kin selection offers a solution to this social dilemma, but in large social groups mean relatedness is often low.

View Article and Find Full Text PDF

Inclusive fitness theory provides the conceptual framework for our current understanding of social evolution, and empirical studies suggest that kin selection is a critical process in the evolution of animal sociality. A key prediction of inclusive fitness theory is that altruistic behaviour evolves when the costs incurred by an altruist (c) are outweighed by the benefit to the recipient (b), weighted by the relatedness of altruist to recipient (r), i.e.

View Article and Find Full Text PDF

The social organization of cooperatively breeding species is extremely variable, with diverse social group composition and patterns of relatedness. Species that exhibit alternative routes to helping within the same population are potentially useful systems to investigate the causes and fitness consequences of diverse evolutionary pathways to cooperative behaviour. In this study, we use microsatellite markers and field observations to describe helping behaviour and patterns of relatedness in the unusual cooperative breeding system of the rifleman Acanthisitta chloris.

View Article and Find Full Text PDF

Climate change-induced shifts in phenology have important demographic consequences, and are frequently used to assess species' sensitivity to climate change. Therefore, developing accurate phenological predictions is an important step in modeling species' responses to climate change. The ability of such phenological models to predict effects at larger spatial and temporal scales has rarely been assessed.

View Article and Find Full Text PDF

The evolution of cooperation is a persistent problem for evolutionary biologists. In particular, understanding of the factors that promote the expression of helping behaviour in cooperatively breeding species remains weak, presumably because of the diverse nature of ecological and demographic drivers that promote sociality. In this study, we use data from a long-term study of a facultative cooperative breeder, the long-tailed tit Aegithalos caudatus, to investigate the factors influencing annual variation in helping behaviour.

View Article and Find Full Text PDF

Background: Theoretical modelling of biparental care suggests that it can be a stable strategy if parents partially compensate for changes in behaviour by their partners. In empirical studies, however, parents occasionally match rather than compensate for the actions of their partners. The recently proposed "information model" adds to the earlier theory by factoring in information on brood value and/or need into parental decision-making.

View Article and Find Full Text PDF