Continuous X-ray imaging is known to reduce mechanical vibrations and scan time compared to a step-and-shoot acquisition approach. However, motion during X-ray exposure leads to blurred projections and consequently to loss of spatial resolution and contrast in conventionally reconstructed images. Recent works that aim to reduce continuous motion blur focus only on rotational motion and often include linearization approximations, while many applications would benefit from a more generalized continuous acquisition strategy.
View Article and Find Full Text PDFEdge illumination is an emerging X-ray phase contrast imaging technique providing attenuation, phase and dark field contrast. Despite the successful transition from synchrotron to lab sources, the cone beam geometry of lab systems limits the effectiveness of using conventional planar gratings. The non-parallel incidence of X-rays introduces shadowing effects, worsening with increasing cone angle.
View Article and Find Full Text PDFThe properties of fiber reinforced polymers are strongly related to the length and orientation of the fibers within the polymer matrix, the latter of which can be studied using X-ray computed tomography (XCT). Unfortunately, resolving individual fibers is challenging because they are small compared to the XCT voxel resolution and because of the low attenuation contrast between the fibers and the surrounding resin. To alleviate both problems, anisotropic dark field tomography via grating based interferometry (GBI) has been proposed.
View Article and Find Full Text PDF