A new metallocene-based polymerization mechanism is elucidated in which a zirconium hydride center inserts α-methylstyrene at the start of a polymer chain. The hydride is then regenerated by hydrogenation to release a polyolefin containing a single terminal α-methylstyrenyl group. Through the use of the difunctional monomer 1,3-diisopropenylbenzene, this catalytic hydride insertion polymerization is applied to the production of linear polyethylene and ethylene-hexene copolymers containing an isopropenylbenzene end group.
View Article and Find Full Text PDFThe metal catalyzed polymerization of methyl methacrylate using Cu(0) as the catalyst source has been investigated in toluene. This work looks at polymerizations in a non-polar medium allowing control over the molecular weight and polydispersity with a 4-fold reduction in catalyst concentration versus conventional ATRP, while the use of an active ligand allows the reaction to proceed at room temperature. The use of an excess of PMDETA ligand allows for high conversions, and the addition of a small amount of CuBr(2) enhances living characteristics, enabling efficient chain extension.
View Article and Find Full Text PDF