Crystal orientation mapping experiments typically measure orientations that are similar within grains and misorientations that are similar along grain boundaries. Such (mis)orientation data cluster in (mis)orientation space, and clusters are more pronounced if preferred orientations or special orientation relationships are present. Here, cluster analysis of (mis)orientation data is described and demonstrated using distance metrics incorporating crystal symmetry and the density-based clustering algorithm DBSCAN.
View Article and Find Full Text PDFMeteorites contain a record of their thermal and magnetic history, written in the intergrowths of iron-rich and nickel-rich phases that formed during slow cooling. Of intense interest from a magnetic perspective is the "cloudy zone," a nanoscale intergrowth containing tetrataenite-a naturally occurring hard ferromagnetic mineral that has potential applications as a sustainable alternative to rare-earth permanent magnets. Here we use a combination of high-resolution electron diffraction, electron tomography, atom probe tomography (APT), and micromagnetic simulations to reveal the 3D architecture of the cloudy zone with subnanometer spatial resolution and model the mechanism of remanence acquisition during slow cooling on the meteorite parent body.
View Article and Find Full Text PDF