A calorimeter was built to measure the heat from a porous capacitive working electrode connected in a three-electrode configuration. This makes it possible to detect differences between cathodic and anodic heat production. The electrochemical cell contains a large electrolyte solution reservoir, ensuring a constant concentration of the salt solution probed by the reference electrode via a Luggin tube.
View Article and Find Full Text PDFThe internal energy of capacitive porous carbon electrodes was determined experimentally as a function of applied potential in aqueous salt solutions. Both the electrical work and produced heat were measured. The potential dependence of the internal energy is explained in terms of two contributions, namely the field energy of a dielectric layer of water molecules at the surface and the potential energy of ions in the pores.
View Article and Find Full Text PDFJ Phys Chem B
September 2020
Dilute ferrofluids have important applications in the separation of materials via magnetic levitation. However, dilute ferrofluids pose an additional challenge compared to concentrated ones. Migration of the magnetic nanoparticles toward a magnet is not well counteracted by a buildup of an osmotic pressure gradient, and consequently, homogeneity of the fluid is gradually lost.
View Article and Find Full Text PDFMagnetic density separation is an emerging recycling technology by which several different waste materials-from plastic products, electronics, or other-can be sorted in a single continuous processing step. Larger-scale installations will require ferrofluids that remain stable at several teslas, high magnetic fields at which colloidal stability was not investigated before. Here we optically monitor the concentration profile of iron oxide nanoparticles in aqueous ferrofluids at a field of 10 T and a gradient of 100 T/m.
View Article and Find Full Text PDFInvited for the cover of this issue is the group of Bert M. Weckhuysen at Utrecht University. The image on the cover shows SHIPS, shell-isolated plasmonic superstructures, detecting the presence of picomoles Rhodamine 6G in an aqueous solution using shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS).
View Article and Find Full Text PDFPlasmonic superstructures (PS) based on Au/SiO were prepared for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) in liquid phase applications. These superstructures are composed of functionalized SiO spheres with plasmonic Au nanoparticles (NPs) on their surface. Functionalization was performed with (3-aminopropyl)trimethoxysilane, (3-mercaptopropyl)trimethoxysilane and poly(ethylene-imine) (PEI).
View Article and Find Full Text PDFAqueous two-phase systems provide oil-free alternatives in the formulation of emulsions in food and other applications. Theoretical interpretation of measurements on such systems, however, is complicated by the high polydispersity of the polymers. Here, phase diagrams of demixing and interfacial tensions are determined for aqueous solutions of two large polymers present in a mass ratio of 1:1, dextran (70 kDa) and nongelling gelatin (100 kDa), with or without further addition of smaller dextran molecules (20 kDa).
View Article and Find Full Text PDFA brief review is given on recent progress in experimental and theoretical investigations of the interface between coexisting aqueous phases of biopolymers. The experimental aspects are introduced using results obtained from a model system consisting of aqueous mixtures of nongelling gelatin and dextran. The focus is on the interfacial tension and interfacial electric potential (Donnan potential).
View Article and Find Full Text PDFUltrathin plate-like colloidal particles are effective candidates for Pickering stabilization of water-in-water emulsions, a stabilization that is complicated by the thickness and ultralow tension of the water-water interface. Plate-like particles have the advantage of blocking much of the interface while simultaneously having a low mass. Additionally, the amount of blocked interface is practically independent of the equilibrium contact angle θ at which the water-water interface contacts the nanoplates.
View Article and Find Full Text PDFElectric charge at the water-water interface of demixed solutions of neutral polymer and polyelectrolyte decreases the already ultralow interfacial tension. This is demonstrated in experiments on aqueous mixtures of dextran (neutral) and nongelling fish gelatin (charged). Upon phase separation, electric charge and a potential difference develop spontaneously at the interface, decreasing the interfacial tension purely electrostatically in a way that can be accounted for quantitatively by Poisson-Boltzmann theory.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2015
Manipulation of the self-assembly of magnetic colloidal particles by an externally applied magnetic field paves a way toward developing novel stimuli responsive photonic structures. Using microradian X-ray scattering technique we have investigated the different crystal structures exhibited by self-assembly of core-shell magnetite/silica nanoparticles. An external magnetic field was employed to tune the colloidal crystallization.
View Article and Find Full Text PDFHydrogels that are pH-sensitive and partially cross-linked by cobalt ferrite nanoparticles exhibit remarkable remanent magnetization behavior. The magnetic fields measured outside our thin disks of ferrogel are weak, but in the steady state, the field dependence on the magnetic content of the gels and the measurement geometry is as expected from theory. In contrast, the time-dependent behavior is surprisingly complicated.
View Article and Find Full Text PDFWe studied spontaneously self-assembled aggregates in a suspension of CdSe/CdS core/shell nanorods (NRs). The influence of the length and concentration of the NRs and the suspension temperature on the size of the aggregates was investigated using in situ small-angle X-ray scattering (SAXS) and linear dichroism (LD) measurements under high magnetic fields (up to 30 T). The SAXS patterns reveal the existence of crystalline 2-dimensional sheets of ordered NRs with an unusually large distance between the rods.
View Article and Find Full Text PDFThe 3D distribution of nanocrystals at the liquid-air interface is imaged for the first time on a single-particle level by cryogenic electron tomography, revealing the equilibrium concentration profile from the interface to the bulk of the liquid. When the surface tension of the liquid is decreased, the interaction of the nanocrystals with the liquid-air interface shifts from adsorption to desorption. Macroscopic surface tension measurements do not detect this transition, due to the presence of surface-active molecular species.
View Article and Find Full Text PDFA promising approach to texturize water is by the addition of mutually incompatible polymers, leading to phase separation. Here, we demonstrate that the phase stability of aqueous polymer solutions is affected not only by chemical differences between the polymers but also by their electric charge. Direct electrochemical measurements are performed of the electric potential difference between two coexisting phases in aqueous solutions of the charged protein fish gelatin (nongelling) and the uncharged polysaccharide dextran.
View Article and Find Full Text PDFThe magnetic remanence of silica microspheres with a low concentration of embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization treatments. When the microspheres are dispersed in a liquid, alternating current (AC) magnetic susceptibility spectra reveal a constant characteristic frequency, corresponding to the rotational diffusion of the microparticles; this depends only on particle size and liquid viscosity, making the particles suitable as a rheological probe and indicating that interactions between the microspheres are weak. On the macroscopic scale, a sample with the dry microparticles is magnetically remanent after treatment in a saturating field, and after a demagnetization treatment, the remanence goes down to zero.
View Article and Find Full Text PDFChemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA).
View Article and Find Full Text PDFA general organometallic route has been developed to synthesize Co(x)Ni(1-x) and Co(x)Fe(1-x) alloy nanoparticles with a fully tunable composition and a size of 4-10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co(2)(CO)(8)), here the cobalt-cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys.
View Article and Find Full Text PDFThe first experimental osmotic equation of state is reported for well-defined magnetic colloids that interact via a dipolar hard-sphere potential. The osmotic pressures are determined from the sedimentation equilibrium concentration profiles in ultrathin capillaries using a low-velocity analytical centrifuge, which is the subject of the accompanying paper I. The pressures of the magnetic colloids, measured accurately to values as low as a few pascals, obey Van 't Hoff's law at low concentrations, whereas at increasing colloid densities non-ideality appears in the form of a negative second virial coefficient.
View Article and Find Full Text PDFAnalytical centrifugation is used for the first time to measure sedimentation equilibrium concentration profiles of a ferrofluid, a concentrated colloidal dispersion of strongly absorbing magnetic nanoparticles. To keep the optical absorbance from becoming too strong, the optical path length is restricted to 50 μm by placing the dispersion in a flat glass capillary. The concentration profile is kept from becoming too steep, despite the relatively high buoyant mass of the nanoparticles, by making novel use of a low-velocity analytical centrifuge that was not designed to measure equilibrium profiles.
View Article and Find Full Text PDFQuantum dots form equilibrium structures in liquid dispersions, due to thermodynamic forces that are often hard to quantify. Analysis of these structures, visualized using cryogenic electron microscopy, yields their formation free energy. Here we show that the nanoparticle interaction free energy can be further separated into the enthalpic and entropic contributions, using the temperature dependence of the assembled structures.
View Article and Find Full Text PDFGlycerol is an attractive renewable building block for the synthesis of di- and triglycerols, which have numerous applications in the cosmetic and pharmaceutical industries. In this work, the selective etherification of glycerol to di- and triglycerol was studied in the presence of alkaline earth metal oxides and the data are compared with those obtained with Na2CO3 as a homogeneous catalyst. It was found that glycerol conversion increased with increasing catalyst basicity; that is, the conversion increases in the order: MgO
We show by cryogenic transmission electron microscopy that PbSe and CdSe nanocrystals of various shapes in a liquid colloidal dispersion self-assemble into equilibrium structures that have a pronounced dipolar character, to an extent that depends on particle concentration and size. Analyzing the cluster-size distributions with a one-dimensional (1D) aggregation model yields a dipolar pair attraction of 8-10 kBT at room temperature. This accounts for the long-range alignment of the crystal planes of individual nanocrystals in self-assembled superstructures and for anisotropic nanostructures grown via oriented attachment.
View Article and Find Full Text PDFField-induced structures in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). The field-induced columnar phase locally exhibits hexagonal symmetry and confirms the structures observed in simulations for ferromagnetic dipolar fluids in 2D. The columns are distorted by lens-shaped voids, due to the weak interchain attraction relative to field-directed dipole-dipole attraction.
View Article and Find Full Text PDFWe present the first real-space analysis on a single-particle level of the dipolar chains and branched clusters self-assembling in magnetic fluids in zero field. Spatial correlations and chain-length distributions directly obtained from tracked particle positions in vitrified films of synthetic magnetic (Fe3O4) dispersions provide a quantitative test for simulations and theory of dipolar fluids. A pertinent example is the cluster-size distribution that can be analyzed with a one-dimensional aggregation model to yield a dipolar attraction energy that agrees well with the dipole moment found from independent magnetization measurements.
View Article and Find Full Text PDF